US009417956B2

a2 United States Patent
Sakai et al.

US 9,417,956 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ERROR DETECTION AND CORRECTION
UNIT, ERROR DETECTION AND
CORRECTION METHOD, INFORMATION
PROCESSOR, AND PROGRAM

(71) Applicant: Sony Corporation, Tokyo (IP)

(72) Inventors: Lui Sakai, Kanagawa (JP); Ryoji
Ikegaya, Kanagawa (JP); Tatsuo
Shinbashi, Tokyo (IP); Kenichi
Nakanishi, Tokyo (JP); Yasushi
Fujinami, Tokyo (JP); Makiko
Yamamoto, Tokyo (JP)

(73)

")

Assignee: Sony Corporation, Tokyo (IP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 270 days.

Notice:

1) 14/154,918

(22)

Appl. No.:
Filed: Jan. 14, 2014

Prior Publication Data

US 2014/0223256 Al Aug. 7, 2014

(65)

(30) Foreign Application Priority Data

................................. 2013-020055

Feb.5,2013 (JP)
(51) Int.ClL

HO3M 13/00
GOGF 11/10
U.S. CL

CPC GO6F 11/1012 (2013.01)
Field of Classification Search

CPC GO6F 11/1012; G11B 20/1833; HO3M

(2006.01)
(2006.01)
(52)
gy D

400

13/2909; HO4L 1/0041; HO4L 1/005; HO4L
1/0057
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,012,974 B1* 3/2006 Liu HO4L 25/03337
375/340

2009/0172481 Al* 7/2009 Cornwell GO6F 11/1068
714/721

2011/0138247 Al* 6/2011 Limberg HO4L 1/0041
714/751

FOREIGN PATENT DOCUMENTS

JP 2010-287305 12/2010

* cited by examiner

Primary Examiner — Guy Lamarre
(74) Attorney, Agent, or Firm — Chip Law Group

(57) ABSTRACT

An error detection and correction unit includes: a first-code
error detection section configured to detect whether or not
each of a plurality of first code words in a second code word
has an error, the second code word generated by encoding the
plurality of first code words in chains and being a code word
containing a plurality of partial data; and a second-code error
correction section configured to correct the error in one par-
tial data containing the first code word in which the error is
detected of the plurality of partial data in the second code
word, based on adjacent partial data adjacent to the one partial
data.

15 Claims, 41 Drawing Sheets

ECC PROCESSING SECTION
320 FIRST GODE
WORD

TARGET

410 DATA FOR
FIRST-CODE

SECOND-CODE

ENCODING
=

ENCODING
SECTION

419 | FIRST-GODE
| " ENCODING
SECTION

429

“SECOND CODE WORD

7 Isecon

CODE

DE ON

469 ENCODED-DATA iom
FNCODED-DATA SUPPLY
SECOND | SECTION
GODE
220 1ORD
SECONp=CODE| FIRST CODE

WORD READ SECOND PARITY

CQ) [d?N

PARTICAL

DATA 520

DECODED |53g (529 DECODED FIRST
CODE WORD

L(SBD)

580

FIRST-CODE | ReAD FIRST CODE WORD

DETECTION ERFCR DETECITON

ol

B
DECODED
FIRST [a20
CODE WORD [~
:/70
DecopED-pATA 5% [PEOODED DATA
BUFFER Ioecopep| SECTION

DECODED
DATA

FIRST
CODE WORD

U.S. Patent Aug. 16, 2016 Sheet 1 of 41 US 9,417,956 B2

A~
HOST SYSTEM
- 109 200
~

STORAGE SYSTEM
300

A
MEMORY
CONTROLLER
309 600
A

NON-VOLATILE
MEMORY

FIG. 1

U.S. Patent Aug. 16, 2016 Sheet 2 of 41 US 9,417,956 B2

(100)

300 I :/1 09
~

MEMORY CONTROLLER

/320 A /310
rav K K= INTHEORSFTACE

cPU <$::i>

400 360
) |~

ECC
PROCESSING(#::#>
SECTION

340 350
Vot o
NON

-VOLATILE

roM = K= yEnoRY
INTERFACE

S AN

309
~

(600)
FIG. 2

U.S. Patent

Aug. 16, 2016

400
A~

Sheet 3 of 41

ECC PROCESSING SECTION

420
420 FIRST GODE

SECOND-CODE

410
~

WORD
419
r’

ENCODING
SECTION

429
W

ENCODED-DATA

460
i~

FIRST-CODE

ENCODING
SECTION

US 9,417,956 B2

TARGET
DATA FOR
IRST-CODE
ENCODING
I

SECOND CODE WORD

470
;

469
~

BUFFER

SECOND

ENCODED-DATA

SUPPLY

SECTION

SECOND
CODE
WORD

FIRST CODE

WORD " READ SECOND PARITY

DECODED
PARTICAL
DATA

CODE WOR

520

29 DECODED FIRST

D

READ FIRST CODE WORD

> (360)

ERROR DETECTION

NOTIFICATION

DECODED
FIRST

CODE WORD

DECODED-DATA

BUFFER

580
A

570

N
579
o~

DECODED

FIRST

DECODED-DATA

SUPPLY
SECTION

CODE WORD

-
DECODED
DATA

FIG. 3

US 9,417,956 B2

Sheet 4 of 41

Aug. 16, 2016

U.S. Patent

Kf bits KT bits

Kf bits

CODE

ENCODING

ENCODING

TARGET DATA #1\TARGET DATA #2|TARGET DATA #3
ENCODING

FOR FIRST-CODE|FOR FIRST-CODE|FOR FIRST

4

(FIRST-CODE
ENCODING SECTIO

cT1oN) (FIRST-GODE ENCODING SECTION)

FIRST PARITY #1 FI

(Nf-Kf BITS)

FI1G. 4

U.S. Patent

Aug. 16, 2016

Sheet 5 of 41 US 9,417,956 B2

420
A~

SECT

SECOND-CODE ENCODING

ION 421
FIRST CODE WORD

r
SECOND-CODE
ENCODING TARGET
DATA GENERATION
SECTION

419

o2 (410)

TARGET DATA FOR
SECOND-CODE
ENCODING

422
™,

SECOND

-GODE
ENCODER

SECOND-CODE
WORD

429
7

(460)

FIG.

5

U.S. Patent Aug. 16, 2016 Sheet 6 of 41 US 9,417,956 B2

CHgg%HﬁX¥%IX
Hregtti— | | 1 1 1 1 1 »emans 1 =ownnn
1
1
FIG. 6A

REGULAR
CHECK MATRIX
Hreg# 1—

U.S. Patent Aug. 16, 2016 Sheet 7 of 41 US 9,417,956 B2

CODE LENGTH
A
’SIZE (Ns BITS)OF PARTIAL DATA K
'd A Y
HU#1 | Hp#et
H #2,
Ns—Ks \'\-\] : O
BITS | | o ™ s He#2
D H, #47
e o
o~ Hp#3
— AR TTTH #ES
Hb= H“#ﬁu#fx ‘ H#e/J
Pt
Hu#5 oo

U.S. Patent

GENERATOR
MATRIX

G =

Aug. 16, 2016

Sheet 8 of 41

CODE LENGTH(N
A

BITS)

11 812
g21 822

£K1

SECOND CODE WORD

TARGET DATA

FOR SECOND-CODE

ENCODING

SECOND
PARITY

A
r N7

ty o)

(d1 T dK

FI1G. 8A

TARGET DATA FOR
SECOND-CODE

KN

ENCODING
A

US 9,417,956 B2

SIZE(K BITS)
OF TARGET
>~ DATA FOR
SECOND-CODE
ENCODING

4 N
= (didy "~ dx) G

FIG. 8B

U.S. Patent Aug. 16, 2016 Sheet 9 of 41

Nf BITS
(S—
FIIRST CODE WORD #

1
L J
Y

PARTIAL DATA #1
(Ns'BITS)
r 1

| \
F[ﬁsT CODE WORD #1 §\

_ J
SECOND PARITY #2
FIRST CODE WORD #1
L - J

(Ks BITS)

PARTIAL DATA"#2(Ns BITS)

r Al
| FIRST cop WorD 42 |
- C

SECOND PARITY #1 SECOND PARITY #2

US 9,417,956 B2

ﬁIRST CODE WORD #?

)

(Ks BITS)

PARTIAL DATA #3(Ns BITS)

#2
FIG. 9

{ 1
&mm CODE WORD#Z§

SECOND
PARITY

U.S. Patent Aug. 16, 2016 Sheet 10 of 41 US 9,417,956 B2

SECOND CODE WORD

PARTIAL PARTIAL
DAT}Ak #1 DAT/)\\ #3
r | r 3
FIRST CODE ¥/ FIRST CODE /] FIRST CODE] ...
~ WORD #1 % WORD #2 //% WORD #3
) - -
SECOND SECOND SECOND
PARITY #1 PARITY #2 PARITY #3
L J

PARTIAL DATA #2

FIG. 10

U.S. Patent Aug. 16, 2016 Sheet 11 of 41 US 9,417,956 B2

530

~
SECOND-CODE_ERROR DETECTION
AND CORRECTION SECTION
(SIZE Ns) READ
=
~
CRECK |o°' [PARTIAL (360)
MATRIX DATA ‘
GENERATION| {GENERATION
SECTION SECTION
PARTIAL DATA
CHECK MATRIX ~ [PARTIRE RATR.
540
o] e |
~CORRECTOR ol
VARTABLE
NODE
PROCESS ING
SECTION
uj Vi
543
A
CHECK NODE
PROCESSING
SECTION

DECODED™ S |27° DECODED

PARTIAL FIRST CODE
DATA ‘~—~ WORD

(520)
FIG. 11

U.S. Patent Aug. 16,2016

Sheet 12 of 41

US 9,417,956 B2

540
q
(522)
A
r)
SECOND CODE
WORD 44
~
542 542| 542] 42| 542| 542| 542| 542| 542 | 542 542
Giéd R LABLE
PROGESSING
SECTION
L
ANNN pd 543
~
GHECK NODE
PROCESSING
SECTION
544 544 544 544 544

FIG. 12

U.S. Patent Aug. 16, 2016 Sheet 13 of 41 US 9,417,956 B2

542
(VR] us Vi
N U'] wan U3 aaw us
Ao Ao A2
544 544 544
FIG. 13A

542 542 542 542 542 542

(ORCTOROR

(VR V3 A\ Vg

U1

A
544

FI1G. 13B

U.S. Patent Aug. 16, 2016 Sheet 14 of 41 US 9,417,956 B2

SECOND PARITY #1 SEGOND PARITY #2
WITH ERROR WITH ERROR

~ FIRST CODE

i it
. N\ N\ ‘§§
e [T

Y 4 p4

(FIRST-CODE ERROR DETECTION (FIRST-GCODE ERROR DETECTION (FIRST-CODE ERROR DETECTION
AND CORRECTION SECTION) AND CORRECTION SECTION) AND CORRECTION SECTION)

~ FIRST CODE RST E WORD FIRST CODE
~ WORD #1 RROR ~ WORD #3

(CORRECTION IS SUCGESSFUL) (CORRECTION 1S SUCGESSFUL)

(

L GORRECTION HAS FAILED)k)
PARTIAL DATA #1 PARTIAL DATA #3
L 3
(SECOND-CODE ERROR DETECTION (SECOND-CODE "ERROR DETECTION
AND CORRECEi?N SECTION) AND CORRECI@?N SECTION)

r)!

o

N\

e B

| AN |
Erd e

A\
SECOND PARTY #1 SECOND PARTY #2

L J
'

EACH OF BITS OF FIRST CODE WORDS #1
{L AND #3 IS SPECIFIED AS KNOWN BIT

(SECOND-CODE ERROR DETECTION AND CORRECTION SECTION)

i

&
§ FIWROSRTD e \\N

FIG. 14

U.S. Patent Aug. 16, 2016 Sheet 15 of 41 US 9,417,956 B2

COMMAND HAS BEEN
RECEIVED?
S920
ENCODING
e S930
WRITE SECOND
CODE WORD
!
S—"COMMAND HAS BEEN
RECEIVED ?
Yes
8950
READ FIRST
CODE WORD
— S960
DECODING

FIG. 15

U.S. Patent Aug. 16,2016 Sheet 16 of 41

< ENCODING >
STARTS

ENCODE EACH OF TARGET
DATA FOR FIRST-CODE

ENCODING INTO FIRST CODE

ENCODE ALL OF
FIRST CODE WORDS
INTO SECOND CODE

END

FIG. 16

5922

US 9,417,956 B2

U.S. Patent Aug. 16, 2016 Sheet 17 of 41 US 9,417,956 B2

DECODING
STARTS

5961

ERROR CORRECTION
10 FIRST CODE
WORD

SECOND-CODE
ERROR DETECTION
AND CORRECTION

_— 5963

OUTPUT CORRECTED
TARGET DATA FOR
FIRST-CODE ENCODING

END

FIG. 17

U.S. Patent Aug. 16, 2016 Sheet 18 of 41 US 9,417,956 B2

<:SECOND~CODE ERROR DETECTION
AND CORRECTION STARTS

PARTIAL DATA

ACQUIRE ADJACENT

— 5972

ERROR CORRECTION TO
ADJACENT PARTIAL DATA

— 5973

CORRECTION HAS FAILED

ERROR CORRECTION TO PARTIAL DATA
CONTAINING FIRST CODE WORD TO WHICH

END

FIG. 18

U.S. Patent Aug. 16, 2016 Sheet 19 of 41 US 9,417,956 B2

SECOND CODE WORD
(A \

SECOND PARITY #2

N
FIRST CODE ~ FIRST CODE | ... N\ ..
WORD #1 ‘ WORD #2 :S\\x\
__J

SECOND, PARITY #2
oy

. TARGET DATA SECOND PARITY BLOCK
FOR FIRST

. GODE
ENCODING

FIRST PARITY #1

FIG. 19

SECOND CODE WORD

(3\
PARTIAL DATA #1 PARTIAL DATA #3
(A Y (A \
FIRST FIRST Pz TRl FIRST P77 TR FRT V7
WO%ODD E#1 WOCRODDE#1 ///: WOClQDD E#3 WO%OlPE#4 /% WOCIQI)[)%5 WOCR%D%G /ﬁ
- - -
SECOND PARITY SECOND PARITY SECOND PARITY
#1 #2 #3
L J

PARTIAL DATA #2

F1G. 20

U.S. Patent Aug. 16, 2016 Sheet 20 of 41 US 9,417,956 B2

SECOND CODE WORD

r N
PARTIAL DATA #1 PARTIAL DATA #3
r A 3 \
TARGET DATA #1 TARGET DATA #1 / TARGET DATA #1 %
S B L O S B B
N -
SECOND PARITY SECOND PARITY SECOND PARITY
L#1 #2) #3

PARTIAL DATA #2

FIG. 21

U.S. Patent

Aug. 16, 2016 Sheet 21 of 41 US 9,417,956 B2

SECOND-CODE ERROR DETECTION:>
AND CORRECTION STARTS

L S871

ACQUIRE ADJACENT
PARTIAL DATA

| — 5981

ACQUIRE PARTIAL DATA CONTAINING
FIRST CODE WORD TO WHICH CORRECTION
HAS FAILED

— 5982

COLLECTIVELY CORRECT ERRORS IN
ACQUIRED PARTIAL DATA

END

FIG. 22

U.S. Patent Aug. 16, 2016 Sheet 22 of 41 US 9,417,956 B2

SECOND CODE CHECK SECOND CODE CHECK

BIT COLUMN #1 BIT COLUMN #2
WITH ERROR WITH ERROR
%?Smaﬂmgsﬂ13%%&%&8&0 e B
L J L J

Y v ~

!

(SECOND~-CODE ERROR DETECTION (SECOND-CODE ERROR DETECTION (SECOND-CODE ERROR DETECTION
AND GORREGTION SECTION) AND CORRECTION SECTION) AND CORREGTION SEGTION)

U iL I

4 R
N
 FIRST CODE \\ RST £ WORD FIRST CODE \\
- WORD #1 \ RROR WORD #3 '
(CDRRECTION 1S SUGCESSFUL) (CORRECTION IS SUCCESSFUL)
L (CORRECTION HAS FAILED))

PARTIAL DATA #1—#3(ONE DECODING UNIT)

(SECOND-CODE ERROR DETECTION AND CORRECTION SECTION)

I
F WOSRTD %0105 : \\§ FWOSRTD CiszE % wRoSRTD 0#030[-:

N\

/4

-

FIG. 23

U.S. Patent Aug. 16, 2016 Sheet 23 of 41 US 9,417,956 B2

530

~

SECOND-CODE ERROR DETECTION AND
(SIZE Ns) GORRECTION SECGTION READ

l 532 SECOND

Y, PARITY
CECK |>°' [PARTIAL (360

MATRIX DATA
GENERATION GENERATION
SECTION SECTION

CHECK CORRECTIONT [PARTIAL DATA
-MATRIX RESULT gl;ll% KNOWN
’340

SECOND-CODE
ERROR DETECTOR
—AND-CORRECTOR 541

A~
VARTABLE
NODE
PROCESSING
SECTION

uj vi

543
S

CHECK
NODE
PROCESSING
SECTION

DECODED 539| {529 DECODED
PARTIAL ™M ¥ FIRST CODE
DATA ¢ L WORD

(520)

FIG. 24

U.S. Patent Aug. 16, 2016 Sheet 24 of 41 US 9,417,956 B2

SECOND-CODE ERROR DETECTION
AND CORRECTION STARTS

5971
ACQUIRE ADJAGENT
PARTIAL DATA

—S972
ERROR CORREGTION TO
ADJACENT PARTIAL DATA

DATA IS SUGCESSFUL
7

— 5975

ACQUIRE PARTIAL DATA ADJAGENT
TO PARTIAL DATA TO WHICH
CORRECTION HAS FAILED

|

\

ERROR CORRECTION TO PARTIAL DATA
IN INVERSE ORDER TO TRACING ORDER

END

FIG. 25

U.S. Patent Aug. 16, 2016 Sheet 25 of 41 US 9,417,956 B2

SECOND PARITY ~ SECOND PARITY ~ SECOND PARITY
#1 WITH ERROR #2 WITH ERROR #3 WITH ERROR

A -~
~N ,/// -
FIRST CODE FIRST b WORD FIRST WOR§ FIRST CODE §
WORD #1 \\ #2 OR #3 RROR WORD #4 |
(CORRECTION IS SUCCESSFUL) \ (CORRECTION [S SUCCESSFUL)
. CORRECTION HAS FAILED) (CORRECTION HAS FAILED)
PARTIAEE?ATA #1 PARTIAL DATA #3
(SECOND-CODE ERROR DETECTION (SECOND-CODEVERROR DETECT ION
AND CORRECTION SECTION) AND CORRECT&BN SECTION)
; L S
§?1me0@§ FIRST CODE §§
#3 RROR WORD #4 | |
/ AN

N

(GORRECTION 1S FAILED) " v
PARTIAL DATA #4

&
(SEGOND-CODE ERROR DETECTION AND CORRECTION SECTION)

&

FIRST CODE WORD\{ FIRST CODE
#3 WITH ERRORR\| WORD #4
) PARTIALYDATA #3 (C)ORRECHON IS SUGGESSFUL)

JL
(SECOND-CODE ERROR DETECTION AND CORRECTION SECTION)
v L
; I _
~ FIRST CODE ;§§FIRST CODE WORD\| FIRST CODE
~ WORD #1 | | #2 WITH ERRORE| WORD #3
~ WORD &1 F H ERR
(COERECTION [S SUCCESSFUL) (CORRECTION IS SUCCESSSUL)
Y
JL
(SECOND-CODE ERROR DETECTION AND CORRECTION SECTION)
L
| FIRST CODE
| |
§§ WORD #2

(CORRECTION IS SUCCESSFUL)
FI1G. 26

U.S. Patent Aug. 16, 2016 Sheet 26 of 41 US 9,417,956 B2

SECOND-CODE ERROR DETECTION
AND CORRECTION STARTS

8971
AGQUIRE ADJACENT
PARTIAL DATA

W §972
ERROR CORREGTION TO
ADJACENT PARTIAL DATA

ERROR 3974
CORRECTION TO PARTIAL—1%S
DATA 1S SUCCESSFUL
?

No

ACQUIRE PARTIAL DATA | s— S975
ADJACENT TO PARTIAL
DATA TO WHICH
CORRECTION HAS FAILED

ERROR S976
o CORRECTION TO
FIRST CODE WORD IS
SUCCESSFUL 2

Yes

v

S9
ERROR CORRECTION TO PARTIAL DATA 5 >0
IN INVERSE ORDER TO TRACING ORDER

END

F1G. 27

U.S. Patent Aug. 16, 2016 Sheet 27 of 41 US 9,417,956 B2

SECOND PARITY ~ SECOND PARITY SECOND PARITY
#1 VITH ERROR 42 W TH ERROR #3 WITH ERROR

N

" FIRST CODE §§FIRST c WOR§§%IR WORD | FIRST CODE §§

WORD #1 §§ OR #3 w RRORE | ~ WORD #4 | |

(CORRECTION IS SUCCESSFUL) \ (CORRECTION 1S SUCCESSFUL)

L J(CORREGTION HAS FAILED) J
PARTIAL DATA #1 <WW”W““”””PMTMLDMA#4

. &b
(SECOND-CODE ERROR DETE CTION (SECOND-CODE ERROR DETECTION
AND CORRECTION SECTION)

AND CORRECTION SEﬁIION)

FIRST CODE WORD\| FIRST CODE
#3 WITH ERROR| | WORD #4

L

J
PART[ALYDATA #3 (CORRECTION 1S SUCCESSFUL)

&
(SECOND-CODE ERROR DETECTION AND CORRECTION SECTION)
v &
~ FIRST CODE §§F1Rsr CODE_WORD FIRST CODE
WORD #1 §§ #2 WITH ERRORR | WORD #3
(COFSREGTION IS SUGCESSFUL) (GORRECGTION IS SUCCESSFUL)
<&
(SECOND-CODE ERROR DETECTION AND CORRECTION SEGTION)
<
| FIRST CODE
L
~ - WORD #2
(CORRECTTON TS SUCCESSFUL)

FIG. 28

U.S. Patent Aug. 16,2016

Sheet 28 of 41 US 9,417,956 B2

SECOND-CODE ERROR DETECTION

AND CORRECTION STARTS

ACQUIRE ADJACENT
PARTIAL DATA

CORRECTION
10 ADJAGENT
PARTIAL DATA

ERROR
CORRECTION TO PARTIAL
DATA 1S SUCCESSFUL

?

READ SECOND
CODE WORD

5984

$974
Yes

¢ S973

GORREGTION TO
SECOND CODE WORD

CORRECTION TO PARTIAL DATA
CONTAINING FIRST CODE WORD
T0 WHIGH CORRECTION HAS FAILED

END

FIG. 29

U.S. Patent Aug. 16, 2016 Sheet 29 of 41 US 9,417,956 B2

420
A

SECOND CODE ENCODING SECTION TARGET BIT rn FOR
430 | SECOND-CODE
ENCODING

419
£/_(410)

SECOND-CODE ENCODER

431

aod

}432\1 433
N o

>

M

TE o
R

Ve
SECOND PARITY BIT

SECOND CODE | 12
(rms Cm)r:: L~

L J

U.S. Patent Aug. 16, 2016 Sheet 30 of 41 US 9,417,956 B2

INPUT:0.~0UTPUT: 00

INPUT:1,~70UTPUT : 11 INPUT:1,~0UTPUT: 11

INPUT:1.~70UTPUT: 10

INPUT:0.~0UTPUT: 00

INPUT:0.~0UTPUT: 01 INPUT:0,~QUTPUT : 01

INPUT:1,~0UTPUT : 10

F1G. 31

U.S. Patent Aug. 16, 2016 Sheet 31 of 41 US 9,417,956 B2

430
e SECOND-CODE [
fo ENCODER))
Co 0| O (.
0
o ;
SECOND-CODE
- ENCODER /
- T 1L Frs
1 o CODE
WORD
#
o
SECOND-CODE
WORD N ENCODER " TGobE
)) Q:! s
Cis ris ra :."‘ /
/ a0 f
'." n §
SECOND-CODE]
e ENCODER / a
1V 4 16
o | e = SEGOND
CODE
WORD
#2
./
(N
-

FIG. 32

U.S. Patent

Aug. 16,2016 Sheet 32 of 41 US 9,417,956 B2
530
A~
SECOND-CODE ERROR DETECTION | peyo
AND CORRECTION 539 SECOND
SECTION
PARTIALp/ AR
0
DATA (360)
GENERATION
SECTION
PARTIAL DATA 550
A
SECOND-CODE
ERROR
DETECTOR-AND
—-CORRECTOR
539 929
DECODED ‘“/ /d’ggggD%BREIRST
PARTIAL
DATA —
(520)

FIG. 33

U.S. Patent Aug. 16, 2016 Sheet 33 of 41 US 9,417,956 B2

PARTIAL PARTIAL PARTIAL

DATA #1 DATA #2 DATA #3
'(CORRECTION '(CORRECT ON‘(CORRECTION
18 HAS L 18

SUCCESSFUL) FAILED) SUCCESSFUL)

READING TIME

ﬁ“‘— |
FIG. 34A

PARTIAL PARTIAL PARTIAL
DATA #1 DATA #2 DATA #3
'(CORRECTION ‘(CORRECTION'(CORRECTION

LIS ! HAS IS

SUCCESSFUL). FAILED) SUCCESSFUL) READING TIME
T
(10 C%X“"

2
(01)
8Ss
(11)

So (‘jo .
AN
I
i
|
i
1

U.S. Patent Aug. 16, 2016 Sheet 34 of 41 US 9,417,956 B2

[\620
SECOND-GODE ENCODING SECTION /340
Fm
SECOND-CODE ENCODER 419

22 (410)

PRE- oY

bCn |INTERLEAVING
SECOND-CODE

ENCODER
442
~;
DELAY
BUFFER
;}5
AL 443
|/
A INTERLEAVER

444
A

POST-

aC.. [INTERLEAVING

SECOND-CODE
ENCODER

SECOND CODE
428 _ (rms bCrr, aCrr)

FIG. 35

U.S. Patent Aug. 16, 2016 Sheet 35 of 41 US 9,417,956 B2

530
A
SECOND-CODE ERROR DETECTION AND CORRECTION SECTION READ
532 SECOND
A
PARTIAL PAR}JSYO)
DATA DECODED FIRST CODE WORD A
GENERAT I ON| “CORRECTION RESULT
SECTION
SECOND CODE 560
WORD AND STATE ~
SECOND-CODE
4 rad 561
POST- Ly PRE- v
INTERLEAVING DEINTER INTERLEAVING
SECOND-CODE -LEAVER SECOND-CODE
ENCODER ENCODER
562
~
INTER
—-LEAVER
DECODED {939 529
PARTIAL [’ r’
DATA N J
Y
(520)

F1G. 36

U.S. Patent Aug. 16,2016

Sheet 36 of 41 US 9,417,956 B2
420
“2 TARGET BIT ru
SECOND-CODE ENCODING SECTION | FoR SECOND-CODE
430 VENCODING
Di SECO%P 19
) (410)
oo ENCODER
BITc.
451
PARITY [
DATA
BUFFER
452
FIRST 1
—CODE
ENCODER
FIRST CODE WORD
428
S =
- Y
(460)

FI1G. 37

U.S. Patent Aug. 16, 2016 Sheet 37 of 41

SECOND CODE WORD

US 9,417,956 B2

FIRST CODE FIRST CODE
WORD #1 WORD #2

FIRST CODE
WORD #9

- TARGET DATA
#1 FOR

| FIRST-CODE |
ENCODING ;

FIRST PARITY #1

SECOND PARITY

DATA #1
SECOND PARITY ¥~
49 FIRST
- PARITY #9

-

SECOND PARITY #1

FIG. 38

U.S. Patent Aug. 16,2016

Sheet 38 of 41

US 9,417,956 B2

530

SECOND PARITY
DECODING

532

AFTER FIRST-CODE |FIRST-CODE
ERROR

SECOND-CODE ERROR DETECTION
AND CORRECTION SECTION

SECOND PARITY
DATA ENCODED
INTO FIRST CODE

PARTIAL
DATA
GENERATION

SECTION

PARTIAL

DATA 550
~

SEGOND-CODE
ERROR
DETECTOR-AND
~CORRECTOR

™ Len

DETECTOR
~AND
~CORRECTOR

DECODED 538\
PARTIAL
DATA

(520)

IEZQDECODED FIRST

CODE WORD

FIG. 39

(360)

U.S. Patent

ENCODER

Aug. 16,2016 Sheet 39 of 41 US 9,417,956 B2
420
v
SECOND-GODE ENGODING SECTION
a2 FIRST CODE
SECOND-CODE o
ENCODING 4
TARGET DATA (#10)
GENERATION
SECT 10N
TARGET DATA
FOR SECOND-CODE
ENCODING 422 423
N, ~
SECOND-CODE | | THIRD-CODE

ENCODER

SECOND CODE WORD | 429

(SPATIALLY-COUPLED I
LDPC CODE WORD)

=

428 THIRD CODE WORD
~ (LDPC CODE WORD)

J

-~
(460)

FIG. 40

U.S. Patent

Aug. 16, 2016 Sheet 40 of 41

US 9,417,956 B2

CHECK MATRIX #1
(BAND MATRIX)

CHECK MATRIX #2
(SPARSE MATRIX)

FIG. 41

U.S. Patent

Aug. 16, 2016 Sheet 41 of 41 US 9,417,956 B2
530
A
SE%&%P?%%&E ERﬁ%ﬁ:&g;Fﬁ;JON
ECT
(SIZE Ns) READ
l 534 SECOND
CHECK 531 rf PARITY
"~
VATRIX CODE WORD 5360>
GENERATION (360)
GENERATION SECTION
SECTION READ
CHECK MATRICES PARTIAL DATA, %??Y
RESULT AND KNOWN BIT
: 540
SECOND-CODE ERROR v/
DETECTOR-AND
~CORRECTOR 341
VARIABLE
NODE
PROCESSING
SECTION
uj vi
542
A
CHECK
NODE
PROCESSING
SECTION
539 | |529
DECODED PARTIAL ~{ |~ DECODED
DATA, THIRD CODE / FIRST CODE
WORD .~ WORD
(520)

F1G. 42

US 9,417,956 B2

1
ERROR DETECTION AND CORRECTION
UNIT, ERROR DETECTION AND
CORRECTION METHOD, INFORMATION
PROCESSOR, AND PROGRAM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Japanese Priority
Patent Application JP 2013-020055 filed Feb. 5, 2013, the
entire contents which are incorporated herein by reference.

BACKGROUND

The present technology relates to an error detection and
correction unit, an error detection and correction method, an
information processor, and a program allowing, when
executed by a computer, the computer to implement an error
detection and correction method in the error detection and
correction unit. More specifically, the present technology
relates to an error detection and correction unit, an error
detection and correction method, and an information proces-
sor each of which uses a plurality of kinds of encoding sys-
tems, and a program allowing, when executed by a computer,
the computer to implement an error detection and correction
method in the error detection and correction unit.

When data stored in a data recording and reproduction unit
such as a magneto-optical recording disk, a hard disk, and a
non-volatile memory is reproduced, the stored data may be
corrupted and may not be read correctly, due to damage to the
data recoding and reproduction unit, thermal noise, and the
like. To deal with such data corruption, a typical data record-
ing unit encodes data that is to be stored into an error detection
and correction code (ECC), and holds the ECC. When the
data is reproduced, the data recoding unit is allowed to detect
and correct an error in the data with use of the ECC.

In encoding, a plurality of encoding systems may be used
to improve error correction capability. For example, there is
proposed a non-volatile memory that encodes a plurality of
data into block code words, encodes these respective block
code words into respective convolution code words, and then
holds the convolution code words (for example, refer to Japa-
nese Unexamined Patent Application Publication No. 2010-
287305). In a case where the non-volatile memory has per-
formed error correction to each of the block code words, and
the error correction to one of the block code words has failed,
the non-volatile memory reliably corrects an error in the data
by decoding the convolution code word containing the block
code word to which the error correction has failed.

SUMMARY

In the above-described technique, it may take a long time to
correct an error in data. In the above-described non-volatile
memory, a sequence in which a plurality of block code words
are interleaved is convolutionally encoded as a target for
encoding. Since the thus-interleaved sequence is convolu-
tionally encoded, it is necessary to decode all convolution
code words before decoding one block code word. Therefore,
in the above-described non-volatile memory, to reliably cor-
rectdata, even if correction to one block code word has failed,
it is necessary to correct all convolution code words. Accord-
ingly, it takes a long time to correct the error in the data, and
it is difficult to accurately correct the error in the data at high
speed.

It is desirable to accurately correct an error in data at high
speed.

20

40

45

50

65

2

According to an embodiment of the present technology,
there is provided an error detection and correction unit includ-
ing: a first-code error detection section configured to detect
whether or not each of a plurality of first code words in a
second code word has an error, the second code word gener-
ated by encoding the plurality of first code words in chains
and being a code word containing a plurality of partial data;
and a second-code error correction section configured to cor-
rect the error in one partial data containing the first code word
in which the error is detected of the plurality of partial data in
the second code word, based on adjacent partial data adjacent
to the one partial data.

According to an embodiment of the present technology,
there is provided an error detection and correction method
including: detecting whether or not each of a plurality of first
code words in a second code word has an error, the second
code word generated by encoding the plurality of first code
words in chains and being a code word containing a plurality
of partial data; and correcting the error in one partial data
containing the first code word in which the error is detected of
the plurality of partial data in the second code word, based on
adjacent partial data adjacent to the one partial data.

According to an embodiment of the present technology,
there is provided a non-transitory tangible recording medium
having a program embodied therein, the computer-readable
program allowing, when executed by a computer, the com-
puter to implement a method, the method including: detecting
whether or not each of a plurality of first code words in a
second code word has an error, the second code word gener-
ated by encoding the plurality of first code words in chains
and being a code word containing a plurality of partial data;
and correcting the error in one partial data containing the first
code word in which the error is detected of the plurality of
partial data in the second code word, based on adjacent partial
data adjacent to the one partial data.

Thus, an effect is achieved that the error is corrected, based
on the adjacent partial data.

Moreover, in the error detection and correction unit accord-
ing to the embodiment of the present technology, a data part
common to partial data adjacent to each other of the plurality
of partial data may be a common code word, and the second-
code error correction section may correct the error in the one
partial data containing the first code word in which the error
is detected, based on the data part common to the one partial
data and the adjacent partial data. Thus, an effect is achieved
that the error is corrected, based on the data part common to
the partial data adjacent to each other.

Further, in the error detection and correction unit according
to the embodiment of the present technology, the second-code
error correction section may correct an error in the adjacent
partial data, and when error correction to the adjacent partial
data is successful, the second-code error correction section
may correct the error detected by the first-code error detection
section, based on the adjacent partial data. Thus, an effect is
achieved that, when error correction to the adjacent partial
data is successful, the error is corrected, based on the adjacent
partial data.

Furthermore, in the error detection and correction unit
according to the embodiment of the present technology, when
error correction to the adjacent partial data has failed, the
second-code error correction section may correct an error in
new adjacent partial data that is partial data adjacent to the
adjacent partial data, and may determine whether or not error
correction to the new adjacent partial data is successful. Thus,
an effect is achieved that, in a case where error correction to
the adjacent partial data has failed, partial data adjacent to the
adjacent partial data is used as the new adjacent partial data.

US 9,417,956 B2

3

In the error detection and correction unit according to the
embodiment of the present technology, when an error in the
first code word contained in the adjacent partial data is not
detected, the second-code error correction section may cor-
rect the error detected by the first-code error detection sec-
tion, based on the adjacent partial data, and when an error in
the first code word contained in the adjacent partial data is
detected, the second-code error correction section may deter-
mine whether or not an error is detected in the first code word
contained in new adjacent partial data that is partial data
adjacent to the adjacent partial data. Thus, an effect is
achieved that, in a case where the error is detected in the first
code word contained in the adjacent partial data, partial data
adjacent to the adjacent partial data is used as the new adja-
cent partial data.

In the error detection and correction unit according to the
embodiment of the present technology, the second-code error
correction section may correct an error in the second code
word when error correction to the adjacent partial data has
failed. Thus, an effect is achieved that, in a case where error
correction to the adjacent partial data has failed, the error in
the second code word is corrected.

In the error detection and correction unit according to the
embodiment of the present technology, the second-code error
correction section may determine whether or not correctionto
the error that is performed, based on the adjacent partial data,
is successful, and when the correction has failed, the second-
code error correction section may correct the error, based on
third code words each containing the first code word. Thus, an
effect is achieved that, in a case where error correction that is
performed, based on the adjacent partial data, has failed, the
error is corrected, based on the third code words each con-
taining the first code word.

In the error detection and correction unit according to the
embodiment of the present technology, the second code word
may be a convolution code word, and the second-code error
correction section may correct the error, based on a result of
a convolution operation performed on the adjacent partial
data. Thus, an effect is achieved that the error is corrected,
based on the result of the convolution operation performed on
the adjacent partial data.

In the error detection and correction unit according to the
embodiment of the present technology, the second code word
may be a turbo code word. Thus, an effect is achieved that the
error is corrected in the turbo code word.

In the error detection and correction unit according to the
embodiment of the present technology, the second-code error
correction section may correct the error in a combination of
the one partial data containing the first code word in which the
error is detected and the adjacent partial data as one decoding
unit. Thus, an effect is achieved that the error in the combi-
nation of the one partial data containing the first code word in
which the error is detected and the adjacent partial data as one
decoding unit is corrected.

In the error detection and correction unit according to the
embodiment of the present technology, each of the plurality
of partial data may contain a second parity used to correct an
error in each ofthe partial data and a first parity used to correct
an error in the second parity, and the second-code error cor-
rection section may correct the error in the second parity with
use of the first parity, and may correct the error in the one
partial data with use of the corrected second parity. Thus, an
effect is achieved that the error in the partial data is corrected
with use of the second parity that is corrected with use of the
first parity.

In the error detection and correction unit according to the
embodiment of the present technology, each of the plurality

10

15

20

25

30

35

40

45

50

55

60

65

4

of'partial data may contain two or more of the plurality of first
code words. Thus, an effect is achieved that an error in the
partial data containing the plurality of block code words is
corrected.

According to an embodiment of the present technology,
there is provided an information processor including: a sec-
ond-code encoding section configured to generate a second
code word by encoding a plurality of first code words in
chains, the second code word being a code word containing a
plurality of partial data; a first-code error detection section
configured to detect whether or not each of the first code
words in the second code word has an error; and a second-
code error correction section configured to correct the error in
one partial data containing the first code word in which the
error is detected of the plurality of partial data in the second
code word, based on adjacent partial data adjacent to the one
partial data. Thus, an effect is achieved that the error is cor-
rected, based on the adjacent partial data.

In the embodiment of the present technology, the error
detection and correction unit is allowed to achieve a superior
effect that data is allowed to be accurately corrected at high
speed.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary, and are intended to provide further explanation of the
technology as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of the technology, and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and, together with the specification,
serve to explain the principles of the technology.

FIG. 1 is a block diagram illustrating a configuration
example of an information processing system according to a
first embodiment.

FIG. 2 is a block diagram illustrating a configuration
example of a memory controller according to the first
embodiment.

FIG. 3 is a block diagram illustrating a configuration
example of an ECC processing section according to the first
embodiment.

FIG. 4 is a diagram for describing block encoding accord-
ing to the first embodiment.

FIG. 5 is a block diagram illustrating a configuration
example of a second-code encoding section according to the
first embodiment.

FIGS. 6A and 6B are diagrams illustrating an example of a
regular check matrix according to the first embodiment.

FIG. 7 is adiagram illustrating an example of a band matrix
according to the first embodiment.

FIGS. 8A and 8B are diagrams for describing a method of
using a generator matrix according to the first embodiment.

FIG. 9 is a diagram for describing an example of a data
dependency relationship in a second code according to the
first embodiment.

FIG. 10 is a diagram illustrating an example of a data
structure of the second code according to the first embodi-
ment.

FIG. 11 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to the first embodiment.

FIG. 12 is a block diagram illustrating a configuration
example of a second-code error detector-and-corrector
according to the first embodiment.

US 9,417,956 B2

5

FIGS.13A and 13B are diagrams illustrating an example of
message exchange between a variable node and a check node
according to the first embodiment.

FIG. 14 is a diagram for describing a method of correcting
the second code according to the first embodiment.

FIG. 15 is a flow chart illustrating an example of an opera-
tion of the memory controller according to the first embodi-
ment.

FIG. 16 is a flow chart illustrating an example of encoding
according to the first embodiment.

FIG. 17 is a flow chart illustrating an example of decoding
according to the first embodiment.

FIG. 18 is a flow chart illustrating an example of second-
code error detection and correction according to the first
embodiment.

FIG. 19 is a diagram illustrating an example of a data
structure of the second code according to a first modification
example of the first embodiment.

FIG. 20 is a diagram for describing an example of a data
structure of the second code word according to a second
modification example of the first embodiment.

FIG. 21 is a diagram for describing an example of a data
structure of the second code word according to a third modi-
fication example of the first embodiment.

FIG. 22 is a flow chart illustrating an example of second-
code error detection and correction according to a fourth
modification example of the first embodiment.

FIG. 23 is a diagram for describing a method of correcting
the second code according to a fifth modification example of
the first embodiment.

FIG. 24 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to a second embodiment.

FIG. 25 is a flow chart illustrating an example of second-
code error detection and correction according to the second
embodiment.

FIG. 26 is a diagram for describing a method of correcting
a second code according to the second embodiment.

FIG. 27 is a flow chart illustrating an example of second-
code error detection and correction according to a first modi-
fication example of the second embodiment.

FIG. 28 is a diagram for describing a method of correcting
the second code according to the first modification example of
the second embodiment.

FIG. 29 is a flow chart illustrating an example of second-
code error detection and correction according to a second
modification example of the second embodiment.

FIG. 30 is a block diagram illustrating a configuration
example of a second-code encoding section according to a
third embodiment.

FIG. 31 is a state transition diagram illustrating an example
of state transition of a second-code encoder according to the
third embodiment.

FIG. 32 is a diagram for describing an example of a method
of generating a second code according to the third embodi-
ment.

FIG. 33 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to the third embodiment.

FIGS. 34A and 34B are examples of trellis diagrams illus-
trating state transition of a second-code encoding section
according to the third embodiment.

FIG. 35 is a block diagram illustrating a configuration
example of a second-code encoding section according to a
fourth embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 36 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to the fourth embodiment.

FIG. 37 is a block diagram illustrating a configuration
example of a second-code encoding section according to a
fifth embodiment.

FIG. 38 is a diagram illustrating an example of a data
structure of a second code according to the fifth embodiment.

FIG. 39 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to the fifth embodiment.

FIG. 40 is a block diagram illustrating a configuration
example of a second-code encoding section according to a
sixth embodiment.

FIG. 41 is a diagram illustrating an example of a check
matrix according to the sixth embodiment.

FIG. 42 is a block diagram illustrating a configuration
example of a second-code error detection and correction sec-
tion according to the sixth embodiment.

DETAILED DESCRIPTION

Some embodiments of the present technology will be
described below. Description will be given in the following
order.

1. First Embodiment (An example in which error correc-
tion is performed, based on adjacent partial data)

2. Second Embodiment (An example in which error cor-
rection is performed, based on adjacent partial data traced
back until correction is successful)

3. Third Embodiment (An example in which a convolution
code word is used as a second code word, and error correction
is performed, based on adjacent partial data)

4. Fourth Embodiment (An example in which a turbo code
word is used as the second code word, and error correction is
performed, based on adjacent partial data)

5. Fifth Embodiment (An example in which error correc-
tion is performed, based on parity corrected in adjacent partial
data)

6. Sixth Embodiment (An example in which error correc-
tion is performed, based on a third code word when error
correction performed based on adjacent partial data has
failed)

1. First Embodiment

Configuration Example of Information Processing
System

FIG. 1 is a block diagram illustrating a configuration
example of an information processing system according to a
first embodiment. The information processing system
includes a host system 100 and a storage system 200.

The host system 100 is configured to control the entire
information processing system. More specifically, the host
system 100 generates commands and data, and supplies the
commands and the data to the storage system 200 through a
signal line 109. Moreover, the host system 100 receives data
from the storage system 200. The commands may be used to
control the storage system 200, and examples of the com-
mands may include a write command for data writing, and a
read command for data reading.

The storage system 200 includes a memory controller 300
and a non-volatile memory 600. The memory controller 300
is configured to control the non-volatile memory 600. When
the memory controller 300 receives the write command and
write data from the host system 100, the memory controller

US 9,417,956 B2

7

300 generates an error detection and correction code (ECC)
from the write data. More specifically, the memory controller
300 converts (i.e., encodes) the write data into an ECC con-
taining the write data and a parity. The memory controller 300
accesses the non-volatile memory 600 through a signal line
309 to write the encoded data to the non-volatile memory 600.

Moreover, when the memory controller 300 receives the
read command from the host system 100, the memory con-
troller 300 accesses the non-volatile memory 600 through the
signal line 309 to read the encoded data. Then, the memory
controller 300 converts (i.e., decodes) the encoded data into
original data before encoded. In this decoding, the memory
controller 300 detects and corrects an error in data, based on
the ECC. The memory controller 300 supplies corrected data
to the host system 100.

The non-volatile memory 600 is configured to hold data,
based on control by the memory controller 300.

Configuration Example of Memory Controller

FIG. 2 is a block diagram illustrating a configuration
example of the memory controller 300 according to the first
embodiment. The memory controller 300 includes a host
interface 310, a RAM (Random Access Memory) 320, a CPU
(Central Processing Unit) 330, a ROM (Read Only Memory)
340, a non-volatile memory interface 350, and a bus 360. The
memory controller 300 further includes an ECC processing
section 400.

The host interface 310 is configured to mutually exchange
data and commands with the host system 100. The RAM 320
is configured to temporarily hold necessary data in processing
that is to be executed by the CPU 330. The CPU 330 is
configured to control the entire memory controller 300. The
ROM 340 is configured to hold a program or the like that is to
be executed by the CPU 330. The non-volatile memory inter-
face 350 is configured to mutually exchange data and com-
mands with the non-volatile memory 600. The bus 360 is a
common path for mutually exchanging data between the host
interface 310, the RAM 320, the CPU 330, the ROM 340, the
non-volatile memory interface 350, and the ECC processing
section 400.

The ECC processing section 400 is configured to encode
write data and to decode read data. In encoding of write data,
the ECC processing section 400 encodes a plurality of write
data as target data for block-code encoding into block codes
on a predetermined unit basis by adding a parity to each of the
target data for block-code encoding. Hereinafter, each of data
encoded into a block code on the predetermined unit basis is
referred to as “first code word”. Then, the ECC processing
section 400 encodes each of the first code words in chains on
a predetermined unit basis. Hereinafter, the data encoded in
chains is referred to as “second code word”. It is to be noted
that the ECC processing section 400 corresponds to a specific
example of “error error detection and correction unit” in an
embodiment of the present technology.

“Encoding in chains” means that a plurality of data are
sequentially encoded in fixed order by encoding with use of a
state obtained from data previous to data that is encoded at
present and the data that is encoded at present. The order of
encoding is determined by the time when data is received or
generated, a value of an address where data is recoded, and the
like. Moreover, the second code word contains the first code
words and parities that are used to detect and correct an error
in the second code word. In other words, the ECC generated
by the ECC processing section 400 contains the first code
word and the second code word. Hereinafter, a parity used to

10

15

20

25

30

35

40

45

50

55

60

65

8

check the first code word is referred to as “first parity”, and a
parity used to check the second code word is referred to as
“second parity”.

The ECC processing section 400 supplies the encoded
write data to the non-volatile memory 600 through the bus
360.

When encoded read data is read, the ECC processing sec-
tion 400 detects and corrects an error in the first code word
with use of the first parity. In a case where error correction to
the first code word has failed, the ECC processing section 400
corrects the second code word with use of the second parity to
correct the error in the first code word to which the error
correction has failed. The ECC processing section 400 sup-
plies the corrected first code word to the host system 100
through the bus 360.

Configuration Example of ECC Processing Section

FIG. 3 is a block diagram illustrating a configuration
example of the ECC processing section 400 according to the
firstembodiment. The ECC processing section 400 includes a
first-code encoding section 410, a second-code encoding sec-
tion 420, an encoded-data buffer 460, and an encoded-data
supply section 470. The ECC processing section 400 further
includes a first-code error detection and correction section
520, a second-code error detection and correction section
530, a decoded-data buffer 570, and a decoded-data supply
section 580.

The first-code encoding section 410 is configured to
encode a plurality of write data as target data for first-code
encoding into the first code words. In this first-code encoding,
for example, a binary BCH (Bose Chaudhuri Hocquenghem)
code may be used as a first code. The first-code encoding
section 410 supplies the first code words generated by the
encoding to the second-code encoding section 420 through a
signal line 419.

It is to be noted that the first-code encoding section 410
uses, as the first code, the BCH code that is capable of detect-
ing and correcting an error; however, the first code is not
limited to the BCH code, and may be any code having error
detection capability. Examples of the first code include a code
containing a parity bit that does not have error correction
capability, a hamming code, and an RS (Reed-Solomon)
code. Moreover, the first-code encoding section 410 may use,
as the first code, a higher-than-binary code.

The second-code encoding section 420 is configured to
encode the first code word into the second code word. More
specifically, the second-code encoding section 420 encodes a
plurality of first code words into the second code word by a
spatially-coupled LDPC encoding system. In decoding, an
error in a whole or a part of the second code word is corrected.
Hereinafter, each of parts that are partially decoded of the
second code word is referred to as “partial data”.

The encoded-data buffer 460 is configured to hold data
encoded into the second code word. The encoded-data supply
section 470 is configured to read the second code word from
the encoded-data buffer 460, and to supply the second code
word to the bus 360.

The first-code error detection and correction section 520 is
configured to detect and correct an error in the first code word.
The first-code error detection and correction section 520 may
correct the error with use of, for example, a hard-decision
decoding method in which a value of each symbol of the first
code word is uniquely determined to be “1” or “0”. The
symbol is a minimum unit configuring a code word, and may
be, for example, 1 bit. The first-code error detection and
correction section 520 decodes the first code word, and the

US 9,417,956 B2

9

first-code error detection and correction section 520 outputs
the decoded first code word to the second-code error detection
and correction section 530, and stores the decoded first code
word in the decoded-data buffer 570. Moreover, if there is the
first code word to which error correction has failed and on
which only error detection is implementable, the first-code
error detection and correction section 520 outputs error detec-
tion notification of the first code word to the CPU 330 through
the bus 360. When the ECC processing section 400 notifies
the CPU 330 in the error detection notification that the error
has been detected, the CPU 330 reads a part (a second parity
used to configure partial data with the first code word of
which decoding has been attempted) of the second parity, and
inputs the part of the second parity to the second-code error
detection and correction section 530.

It is to be noted that the first-code error detection and
correction section 520 corresponds to a specific example of
“first-code error detection section” in an embodiment of the
present technology.

Moreover, the first-code error detection and correction sec-
tion 520 corrects the error in the first code by the hard-
decision decoding method; however, the error may be cor-
rected by a soft-decision decoding method in which a
likelihood (such as a log-likelihood ratio) of a value of each
symbol is determined. For example, a method described in
“Makiko Kan, et al., Hardware Implementation of Soft-De-
cision Decoding for Reed-Solomon Code, 2008 5th Interna-
tional Symposium on Turbo Codes and Related Topics™ may
be used. In this literature, a unit corrects an error in data by a
belief propagation method such as a sum-product algorithm,
based on a likelihood (such as a log-likelihood ratio) of each
symbol of a first code such as an RS code. In this literature,
diagonalization of a check matrix is performed; however,
when the method is applied to embodiments of the present
technology, diagonalization is not necessary. When the soft-
decision decoding method is also used to correct the error in
the first code, error correction capability is improved.

The second-code error detection and correction section
530 is configured to correct, based on one or both of partial
data adjacent to target partial data for correction in which an
error is detected by the first-code error detection and correc-
tion section 520, the error in the target partial data. Partial data
A “adjacent to” partial data B means that the partial data A is
generated immediately before or immediately after the partial
data B in order of encoding. Hereinafter, the partial data
adjacent in such a manner is referred to as “adjacent partial
data”. When the second-code error detection and correction
section 530 receives the second parity, the second-code error
detection and correction section 530 generates partial data
containing the first code word decoded by the first-code error
detection and correction section 520 and that second parity.
For example, the second-code error detection and correction
section 530 may correct an error in partial data with use of the
soft-decision decoding method. A method of correcting the
error will be described in detail later. The second-code error
detection and correction section 530 outputs the partial data
in which the error is corrected to the first-code error detection
and correction section 520 through a signal line 539. The
first-code error detection and correction section 520 stores the
first code word in the partial data in the decoded-data buffer
570.

It is to be noted that the second-code error detection and
correction section 530 corresponds to a specific example of
“second-code error correction section” in an embodiment of
the present technology.

The decoded-data buffer 570 is configured to hold the
decoded first code word. The decoded-data supply section

15

30

40

45

65

10

580 is configured to read the first code word in which the error
is corrected from the decoded-data buffer 570, and to supply,
to the bus 360, decoded data corresponding to target data for
first-code encoding.

FIG. 4 is a diagram for describing first-code encoding
according to the first embodiment. As illustrated in FIG. 4, the
first-code encoding section 410 encodes respective target Kf-
bit data for first-code encoding into respective Nf-bit first
code words, where Kf is an integer, and Nf is an integer
greater than Kf. Each of the first code words contains the
target Kf-bit data for first-code encoding and an Nf-Kf-bit
first parity. Thus, the code word contains the target data for
encoding as it is, and a code capable of easily separating the
code word into data and a parity is referred to as “systematic
code”. It is to be noted that the first code may be a nonsys-
tematic code.

Configuration Example of Second-Code Encoding
Section

FIG. 5 is a block diagram illustrating a configuration
example of the second-code encoding section 420 according
to the first embodiment. The second-code encoding section
420 includes a second-code encoding target data generation
section 421 and a second-code encoder 423.

The second-code encoding target data generation section
421 is configured to collectively supply, to the second-code
encoder 423, a plurality of first codes from the first-code
encoding section 410 as second-code encoding target data.

The second-code encoder 422 is configured to encode tar-
get data for second-code encoding into the second code word.
In encoding into the second code, for example, an encoding
system in which data is encoded into a binary spatially-
coupled LDPC (Low Density Parity Check) code may be
used. A method of encoding into the spatially-couple LDPC
code will be described in detail later referring to FIGS. 6 A and
6B, 7, and 8A and 8B, and the like.

It is assumed that the second-code encoder 422 holds a
generator matrix. However, the second-code encoder 422
may generate a generator matrix from a check matrix. The
check matrix is a matrix used in a process of performing a
parity check on the second code, and the generator matrix is
a matrix used to encode target data for encoding. The genera-
tor matrix may be determined from the check matrix by the
following expression 1. [Math. 1]

GxH™0 Expression 1

where “G” is a generator matrix, and “H” is a matrix
formed by inverting a check matrix H.

The second-code encoder 423 determines a product of the
generator matrix obtained by the expression 1 and the target
data for second-code encoding. The second-code encoder 423
outputs the obtained product as the second code word to the
encoded-data buffer 460 through a signal line 428.

It is to be noted that, as long as the second code is a code
generated by encoding a plurality of data in chains, the second
code is not limited to the spatially-coupled LDPC code. For
example, a convolution code or a turbo code which will be
described later may be used instead of the spatially-coupled
LDPC code. Moreover, the second-code encoding section
420 may use a higher-than-binary code as the second code.
This is also applicable to modification examples which will
be described later of the first embodiment.

FIGS. 6A and 6B are diagrams illustrating an example of a
regular check matrix H,,, according to the first embodiment.
In the spatially-coupled LDPC encoding system, a plurality
of regular check matrices H,,, are generated by the second-

US 9,417,956 B2

11

code error detection and correction section 530. These regular
check matrices H, are check matrices in which the number
of “1”s (hereinafter referred to as “weight”) in each of rows
and columns is fixed. FIG. 6A is a diagram illustrating an
example of weights in the regular check matrix H,,,. In this
example, the weight of each column is “3”, and the weight of
each row is “6”.

The second-code error detection and correction section
530 generates an upper triangular matrix H,, and a lower
triangular matrix H; by diagonally dividing the regular check
matrix H,,,, into two parts. FIG. 6B is a diagram illustrating an
example of the divided regular check matrix H,,,. Hereinatf-
ter, one side of two sides forming a right angle in each trian-
gular matrix is referred to as “bottom side”, and the other side
is referred to as “adjacent side”.

In the spatially-coupled LDPC, partial decoding is allowed
to be performed with use of a partial matrix H,, cut from a
band matrix H,. When a size Ns of partial data is set in the
second-code error detection and correction section 530, the
second-code error detection and correction section 530 cuts a
partial matrix with a size equivalent to Ns from the band
matrix H,. For example, in a case where the size Ns of the
partial data is equal to a length that is twice as large as the
bottom side of the triangular matrix, a partial matrix formed
by combining four triangular matrices with one another may
be used as the check matrix in decoding of the partial data.
The check matrix H, is a matrix having an equal number of
columns to the size Ns of the partial data and an Ns-Ks-
number of rows. Moreover, in a case where the entire second
code word is decoded, the band matrix H, may be used as the
check matrix. The number N of columns in the band matrix
H, is a code length of the second code word.

Ks is a size of data that is partial data without the second
parity. In other words, Ns—Ns is a size of the second parity in
the partial data. Moreover, the size Ns of the partial data may
be set to, for example, a divisor of an access unit of the
non-volatile memory 600. It is to be noted that the size Ns of
the partial data may be set to a multiple of the access unit of
the non-volatile memory 600.

FIGS. 8A and 8B are diagrams for describing a method of
using a generator matrix according to the first embodiment.
FIG. 8A is a diagram illustrating an example of the generator
matrix G according to the first embodiment. The generator
matrix G exemplified in FIG. 8A is generated from the band-
like check matrix H, exemplified in FIG. 7, based on the
expression 1. In a case where the number of columns and the
number of rows in the check matrix H, are N and N-K,
respectively, as illustrated in FIG. 8A, the generator matrix G
with an N-number of columns and a K-number of rows is
generated from the check matrix H,. FIG. 8B illustrates an
example of a calculation expression used to determine the
second code from the generator matrix and the target data for
second-code encoding. As illustrated in FIG. 8B, the second
code word is generated by a product of the generator matrix G
and the target data for second-code encoding. The second
code word contains k-bit target data for second-code encod-
ing and an N-K-bit second parity. Therefore, the second code
is a systematic code containing the target data for encoding as
itis. When the second code is configured of a systematic code,
the ECC processing section 400 is allowed to easily separate
only the first code and correct an error in the first code in
decoding.

FIG. 9 is a diagram for describing an example of a data
dependency relationship in the second code according to the
first embodiment. In FIG. 9, an arrow indicates a dependency
relationship. Each partial data is generated dependently on a
state of partial data adjacent thereto by a matrix operation

5

10

15

20

25

30

35

40

45

50

55

60

65

12

illustrated in FIGS. 8A and 8B. However, partial data at an
end does not contain a second parity adjacent thereto; there-
fore, the size of the partial data at the end is smaller than the
size of other partial data. It is to be noted that, in a case where
the size of the partial size at the end is adjusted to be equal to
the size of the other partial data, dummy data with an equal
size to the size of the second parity may be added instead of
the second parity.

For example, partial data #1 is configured of the first code
word #1. Second partial data #2 is dependent on a second
parity #1 adjacent thereto. Third partial data #3 is dependent
on a second parity #2 adjacent thereto. Thus, each of partial
data other than first partial data is dependent on a part (for
example, a second parity) of partial data adjacent thereto. A
combination of these partial data corresponds to one second
code word. Thus, in the spatially-coupled LDPC coding sys-
tem, the second code word is generated in chains. It is to be
noted that the dependency relationship is not limited to a
relationship exemplified in FIG. 9. For example, each of the
partial data may be dependent on the entire partial data adja-
cent thereto or a plurality of other partial data.

FIG. 10 is a block diagram illustrating an example of a data
structure of the second code in the non-volatile memory 600
according to the first embodiment. As illustrated in FIG. 10,
the second code word contains a plurality of partial data. Each
of the partial data is dependent on the second parity adjacent
thereto. Therefore, a code in which a part (i.e., the second
parity) of data is common to partial data adjacent to each other
is generated as the second code.

Configuration Example of Second-Code Error
Detection and Correction Section

FIG. 11 is a block diagram illustrating a configuration
example of the second-code error detection and correction
section 530 according to the first embodiment. The second-
code error detection and correction section 530 includes a
check matrix generation section 531, a partial data generation
section 532, and a second-code error detector-and-corrector
540.

The check matrix generation section 531 is configured to
generate a check matrix. In the check matrix generation sec-
tion 531, the size Ns of partial data is set. The check matrix
generation section 531 generates a check matrix with an
Ns-number of columns. The check matrix generation section
531 supplies the generated check matrix to the second-code
error detector-and-corrector 540.

The partial data generation section 532 is configured to
decode the first code contained in partial data adjacent to
partial data containing the first code of which decoding has
failed. It is assumed that reading of the adjacent partial data is
controlled by the CPU 330, and decoding of the first code
contained in the read partial data is successful. Next, the
partial data generation section 532 outputs target partial data
for correction and partial data adjacent to the target partial
data to the second-code error detector-and-corrector 540. At
this time, each of bits of the first code of which decoding is
successful is specified as a known bit, and the partial data
containing the known bit is output to the second-code error
detector-and-corrector 540.

The known bit means a bit in which an error has been
corrected and a corrected value is known. As described above,
partial data adjacent to each other shares the second parity
with each other; therefore, when an error in partial data adja-
cent to the target partial data for correction is corrected, an
error in the second parity in the target partial data is also
corrected accordingly. Therefore, the partial data generation

US 9,417,956 B2

13

section 532 is allowed to specify each bit of the first code as
the known bit. Error correction to the target partial data for
correction is easily executed by specifying the known bit.

Moreover, in generation of partial data, in a case where
partial data adjacent thereto has been corrected by the second-
code error detector-and-corrector 540, the partial data gen-
eration section 532 acquires the second parity of the corrected
adjacent partial data without inputting the corrected adjacent
partial data to the second-code error detector-and-corrector
540 again. For example, a case is considered where error
correction to the first code words in partial data #1 and #3 out
of partial data #1, #2, #3, and #4 has failed and error correc-
tion to the partial data #2 adjacent to the partial data #1 and #3
is performed. In a case where the memory controller 300
performs error correction to the partial data #3 after the
memory controller 300 performs correction to the partial data
#2 and #1 in this order and the correction to both of the partial
data #2 and #1 is successful, the partial data #2 out of the
partial data #2 and #4 adjacent to the partial data #3 has been
already corrected. In this case, since correction to the partial
data #2 is not necessary, the memory controller 300 may
correct the partial data #4 and #3 in this order without cor-
recting the partial data #2 again. The partial data generation
section 532 may generate a flag, for each partial data, indi-
cating whether or not correction has been made, and may
store the flag in the decoded-data buffer 570, and may deter-
mine, referring to the flag, whether or not correction has been
made.

Ina case where, since adjacent partial data has been already
corrected, correction to the adjacent partial data is not per-
formed, the partial data generation section 532 generates
partial data from a read first code word of which decoding has
failed in the first-code error detection and correction section
and a read second parity, and outputs the thus-generated par-
tial data to the second-code error detection and correction
section.

The second-code error detector-and-corrector 540 is con-
figured to detect and correct an error in partial data in the
second code word with use of the check matrix. The second-
code error detection and correction section 530 may correct
the error in the partial data with use of a sum-product algo-
rithm. In a configuration with use of the sub-product algo-
rithm; the second-code error detector-and-corrector 540
includes a variable node processing section 541 and a check
node processing section 543. Algorithms classified as the
sum-product algorithm may include various algorithms such
as a probability-domain sum-product algorithm and a log-
domain sum-product algorithm. The variable node process-
ing section 541 and the check node processing section 543
may correct the error in the second code with use of, for
example, the log-domain sum-product algorithm selected
from these algorithms.

It is to be noted that the variable node processing section
541 and the check node processing section 543 may use any
sum-product algorithm other than the log-domain sum-prod-
uct algorithm.

Moreover, the second-code error detector-and-corrector
540 may use any algorithm such as a bit-flipping algorithm
other than the sum-product algorithms, as long as the algo-
rithm is allowed to detect and correct an error in the second
code word. Further, an algorithm (such as min-sum algo-
rithm) in which a part of a sum-product algorithm is simpli-
fied may be used. Alternatively, a technique described in
“Shuhei Tanakamaru et. al., Over-10x-Extended-Lifetime
76%-Reduced-Error Solid-State Drives (SSDs) with Error-
Prediction LDPC Architecture and Error-Recovery Scheme,
ISSCC 2012” may be used. In an EP (Error-Prediction)-

10

15

20

25

30

40

45

55

60

65

14

LDPC method described in this literature, a unit measures the
number of times data is rewritten and a data holding time per
memory cell in advance and stores the number of times data
is rewritten and the data holding time in tables. Then, the unit
predicts a BER (Bit Error Rate), based on these tables, and
then corrects an error in an LCPC code with use of the BER.

The variable node processing section 541 is configured to
detect and correct the error in the second code word, based on
aresult ofa parity check by the check node processing section
543. Moreover, the check node processing section 543 is
configured to perform a parity check on the second code
word. Partial data in the second code word is input to the
variable node processing section 541. It is to be noted that, as
will be described later, in a case where correction to the partial
data has failed, the partial data generation section 532 may
input the entire second code word to the variable node pro-
cessing section 541.

More specifically, when the variable node processing sec-
tion 541 receives the second code word, the variable node
processing section 541 generates a message U, ;, based on the
second code word. The message u,, , is a real variable repre-
senting a likelihood that a value of an ith symbol (for
example, bit) in the second code word before being corrected
is “0” or “1”. Moreover, “i” is an integer of 0 to Ns—1, where
Nsis a size of the second code word. However, in a case where
the ith bit is specified as the known bit by the partial data
generation section 532, the likelihood of the message v, ; is
set to amaximum value. The variable node processing section
541 generates a message v;, based on the message u,,_; and a
result of the parity check by the check node processing sec-
tion 543, and outputs the message v, to the check node pro-
cessing section 543. The message v, is a real variable repre-
senting a likelihood of a value of an ith bit in the corrected
second code word. In the log-domain sum-product algorithm,
a log-likelihood ratio A(r,) is generated as the message u,, ,.
The log-likelihood ratio A(r;) is a log of a ratio of probability
that the value of the ith symbol (for example, bit) of the code
word is “0” to probability that the value of the ith symbol of
the code word is “1”, and may be determined by the following
expression 2, for example.

[Math. 2]

P(r; = 1)

Expression 2
A(r;)=1In

where r is a received second code word, P(r,=1Ir) is prob-
ability that the value of an ith bit r, in the second code word is
“1”, and P(r,=0lr) is probability that the value of the ith bit r,
in the second code word is “0”.

It is to be noted that the message u,, , is not limited to the
log-likelihood ratio, as long as the message u, , is a value
representing likelihood. For example, probability that the
value of 1, is “1” or “0” may be adopted as the message u,, ;.
This is also applicable to other messages v, and u;. -

The check node processing section 543 performs the parity
check, based on the message v,, generates the message u,,
based on the result of the parity check, and then outputs the
message u, to the variable node processing section 541, where
“” may be an integer of 0 to (Ns—Ks)-1, and Ks is a size of
data that is partial data without the second parity. In the
log-domain sum-product algorithm, the log-likelihood ratio
is output as the message u,.

The variable node processing section 541 and the check
node processing section 543 exchange messages therebe-

US 9,417,956 B2

15

tween until a predetermined termination condition is satis-
fied. For example, when messages are exchanged a fixed
number of times or when an absolute value of the log-likeli-
hood ratio exceeds a threshold value, it may be determined
that the termination condition is satisfied.

When the termination condition is satisfied, the variable
node processing section 541 determines a second code word
in which an error is corrected, based on the received message
u,. The variable node processing section 541 outputs the
corrected second code word to the decoded-data buffer 570.

Configuration Example of Second-Code Error
Detector-and-Corrector

FIG. 12 is a block diagram illustrating a configuration
example of a second-code error detector-and-corrector 540
according to the first embodiment. In the second-code error
detector-and-corrector 540, the variable node processing sec-
tion 541 includes an equal number of variable nodes 542 to
the number of bits of the second code word (i.e., the number
of columns of the check matrix H,). Moreover, the check
node processing section 543 includes an equal number of
check nodes 544 to the number of bits of the second parity in
the second code word (i.e., the number of rows of the check
matrix H,). Then, the check node 544 and the variable nodes
542 are connected to each other, based on a value of a com-
ponent of the check matrix H,. More specifically, when a
value of a component in a jth row and an ith column is “1”, a
jth check node 544 and an ith variable node 542 are connected
to each other, and when the value of the component is “0”,
these nodes are not connected to each other.

The ith variable node 542 is configured to detect and cor-
rect an error in an ith symbol (for example, bit) in second code
word, based on a result of the parity check by the check node
544. The jth check node 544 performs a parity check corre-
sponding to the jth row of the check matrix H,,.

More specifically, the ith variable node 542 receives the ith
bit of the second code word from the partial data generation
section 532, and generates the message u, ,, based on the
value of the bit. In a case where the message u,, ; is the
log-likelihood ratio, when the value of the ith bit is “1”, a
predetermined positive value smaller than a maximum value
Max is set to u,, ;. On the other hand, when the value of the ith
bit is “0”, a predetermined negative value greater than a
minimum value Min is set to u,, ;. The maximum value Max
and the minimum value Min are a maximum value and a
minimum value, respectively, that are dependent on a data
type and data size of the log-likelihood ratio. For example, in
a case where, for example, signed fixed-point data is used for
operation, a numerical range allowed to be represented by the
data is a range corresponding to the number of bits in each of
a real part and an imaginary part. A maximum value and a
minimum value in the numerical range are used as the maxi-
mum value Max and the minimum value Min. It is to be noted
that the second-code error detector-and-corrector 540 may
use signed floating-point data for operation.

However, in a case where the ith bit is specified as the
known bit, a value allowing the likelihood to be maximized is
set. For example, in a case where the value of ith known bit is
“1”, the maximum value Max may be settou,, ,, andina case
where the value of the ith known bit is “0”, the minimum
value Min is set to u,, ;.

After the message u, , is generated, the variable node 542
sets an initial value (for example, “0”) to the message u; from
each of the check nodes 544 connected thereto. Then, the
variable node 542 determines the message v, by calculation

10

—_
w

20

25

30

35

40

45

50

55

60

65

16

with use of the following expression 3, and outputs the mes-
sage v, to one of the check nodes 544 connected thereto.

[Math. 3]

Expression 3

dy-1
Vi =g+ Z u;
J=1

where d, is the number of “1”’s (i.e., weight) in a column of
the check matrix H,,.

When the check node 544 receives the message v, from
each of the variable nodes 542 connected thereto, the check
node 544 determines the message u, by calculation with use of
the following expression 4, and outputs the message u; to one
of the variable nodes 542 connected thereto.

[Math. 4]

()= (4

Expression 4

where d.. is the number of “1”’s (i.e., weight) in a row of the
check matrix H,,, tan h() is a hyperbolic tangent function, and
IIx is an infinite product of x.

This expression 4 may be transformed into an expression 6
with use of the expression 5.

[Math. 5]
axb =exp(ln|a| + n|b]) X sign(a) X sign(b) Expression 5

[Math. 6]

uj=2 tanh*l[dﬁ tanh(%)]

i=1

=2 tanh™! [exp{dﬁll ln(|‘a“h(vi)|)} Xdﬁll Sign(mnh(%))}

i=

S |

Expression 6

de-1

X 1_[sign(v;)

i=1

In the expressions 5 and 6, sign(x) is a function returning a
value of “1” to an input value X in a case of x=0, and returning
a value of “~1” to the input value x in a case of x<O0.

The expression 6 into which the expression 4 is trans-
formed may be further transformed into an expression 8 with
use of a function defined in the following expression 7. The
check node 544 may determine the message u, by calculation
with use of the expression 8, instead of the expression 4.

[Math. 7]

Expression 7

b = (3]

[Math. 8]

—1 Expression 8
i=1

dc—1 d,
uj= ¢*I[Z ¢(|v;|>] x|] sientv
i=1 i

US 9,417,956 B2

17

It is to be noted that the message u, may be determined not
only with use of the expression 4 or the expression 8 but also
by a simpler operation than the expressions 4 and 8. For
example, an operation result of a function R(v,, v,) defined by
an expression 9 may be calculated in advance for each of
possible values of messages v, and v,. Then, a table associ-
ated with the operation result and a combination of the mes-
sages v, and v, may be formed in advance, and an operation
result read from the table may be recursively used as illus-
trated in an expression 10, thereby easily determining the
message U,.

[Math. 9]

R(vi,v2)=2 tanhil{tanh(%l)tanh(%)} Expression 9

[Math. 10]

u; = R(vy, R(va, R(v3... R(vg, 2, vg.—1))) Expression 10

The variable node 542 and the check node 544 generate the
messages v; and u, with use of the expressions 3 and 4, and the
like, and exchange these messages therebetween until a pre-
determined termination condition is satisfied.

When the termination condition is satisfied, the variable
node 542 generates a message v, with use of the following
expression 11. The variable node 542 determines the value of
the ith bit of the second code word, based on the generated
message v,'. For example, the variable node 542 may deter-
mine the value of the ith bitto “1” ina case of v,'=0 and “0” in
a case of v;'<0. Thus, the error in the second code word is
corrected. The variable node 542 outputs partial data cor-
rected in the second code word to the first-code error detec-
tion and correction section 520.

[Math. 11]

Expression 11

d\/
- . .
Vi =ug_; + Z u;

=

It is to be noted that the variable node 542 may execute an
operation of the expression 3 by separating the expression 3
into the expression 11 and the following expression 12. In this
case, in a case where the termination condition is not satisfied,
the variable node 542 outputs, to the check node 544, the
message v, determined by the expression 12. Then, when the
termination condition is satisfied, the variable node 542 deter-
mines a value of a bit in the second code word, based on the
message v, determined by the expression 11.

[Math. 12]

Vvi=v; =y, Expression 12

where u,, is a message from a d,th check node 544 con-
nected to the variable node 542.

FIGS.13A and 13B are diagrams illustrating an example of
message exchange between the variable nodes 542 and the
check nodes 544 according to the firstembodiment. FIG. 13A
is a diagram illustrating an example of message exchange
when the variable node 542 generates the message v,. For
example, it is assumed that a first variable node V1 is con-
nected to first, third, and fifth check nodes U1, U3, and US5. In
this case, when the variable node V1 receives the message u,, ;
from the partial data generation section 532, and receives

15

20

25

35

40

45

55

18

messages U, and u; from the check nodes Ul and U3, the
variable node V1 generates a message v,, based on these
messages, and outputs the message v, to the check node US.

FIG. 13B is a diagram illustrating an example of message
exchange when the check node 544 generates the message u,.
For example, it is assumed that the first check node Ul is
connected to first, third, fifth, sixth, seventh, and ninth vari-
ablenodes V1,V3,V5,V6,V7,and V9. In this case, when the
check node U1 receives messages v, Vs, Vg, V5, and v, from
the variable nodes V3,V5,V6,V7, and V9, the checknode U1
generates the message u,, based on the these messages, and
outputs the message u, to the variable node V1.

FIG. 14 is a diagram for describing a method of correcting
the second code word according to the first embodiment. For
example, a case is considered where a second code containing
first code words #1, #2, and #3 is corrected. The first code
word #1 of these first code words has a correctable number by
first-code error detection and correction section 520 of errors,
and the first code word #2 has an uncorrectable number of
errors. Moreover, it is assumed that each of second parities #1
and #2 added corresponding to them also has an error.

The first-code error detection and correction section 520
corrects the errors in the respective first code words #1, #2,
and #3. In this correction, the first-code error detection and
correction section 520 succeeds in correction to the first code
word #1 with the correctable number of errors, but fails cor-
rection to the first code word #2 with the uncorrectable num-
ber of errors.

In this case, the second-code error detection and correction
section 530 corrects the errors in the partial data #1 and #3
adjacent to the first code word #2 to which the correction has
failed. The errors in the second parity #1 of the partial data #1
and the second parity #2 of the partial data #3 are corrected by
correction to these partial data.

Then, the second-code error detection and correction sec-
tion 530 corrects the errors in the partial data #2 containing
the first code word #2 to which the correction has failed. Inthe
partial data #2, the errors in the second parities #1 and #2 have
been corrected; therefore, the second-code error detection
and correction section 530 is allowed to be accurately correct
the errors with use of the values of bits thereof as known
values.

Thus, the second-code error detection and correction sec-
tion 530 performs error correction to partial data adjacent to
target partial data with an error for correction, thereby cor-
recting an error in the second parity of the target partial data
for correction. Therefore, an error in data is allowed to be
corrected more accurately than in a case where only partial
data with an error is corrected. Moreover, the second-code
error detection and correction section 530 corrects not a
whole of the second code word but a part of the second code
word; therefore, the error in the data is allowed to be corrected
at higher speed than in a case where the entire second code
word is corrected. Further, it is not necessary to read the entire
second code word to a working memory in error correction;
therefore, the second-code error detection and correction sec-
tion 530 is allowed to be configured of a smaller-scale circuit
than a circuit used in a case where the entire second code is
read.

It is to be noted that the second-code error detection and
correction section 530 corrects both of partial data (partial
data #1 and #3) adjacent to the first code word to which
correction has failed; however, the second-code error detec-
tion and correction section 530 may correct only one of the
partial data. When one of the partial data is corrected, the error
in one of the second parity #1 and the second parity #2 in the
target partial data for correction is corrected. When only one

US 9,417,956 B2

19

of'the adjacent partial data is corrected, the second-code error
detection and correction section 530 is allowed to correct an
error in data at higher speed than in a case where both of the
adjacent partial data are corrected.

FIG. 15 is a flow chart illustrating an operation of the
memory controller 300 according to the first embodiment.
For example, the operation may start when the memory con-
troller 300 is powered on.

The memory controller 300 determines whether or not a
write command has been received from the host system 100
(step S910). In a case where the memory controller 300 has
received the write command (step S910: Yes), the memory
controller 300 executes encoding to encode write data (step
$920). The memory controller 300 writes, to the non-volatile
memory 600, write data encoded into the second code word
(step S930). After the step S930, the memory controller 300
returns to the step S910.

In a case where the memory controller 300 has not received
the write command (step S910: No), the memory controller
300 determines whether or not a read command has been
received (step S940). In a case where the memory controller
300 has received the read command (step S940: Yes), the
memory controller 300 reads read data encoded into the first
code word (step S950). Then, the memory controller 300
executes decoding to decode the encoded read data (step
S960). In a case where the memory controller 300 has not
received the read command (step S940: No), or after the step
S960, the memory controller 300 returns to the step S910.

FIG. 16 is a flow chart illustrating an example of encoding
according to the first embodiment. The memory controller
300 encodes each of write data as target data for first-code
encoding into the first code word (step S921). The memory
controller 300 encodes a plurality of first code words into the
second code word (step S922). After the step S922, the
memory controller 300 terminates the encoding.

FIG. 17 is a flow chart illustrating an example of decoding
according to the first embodiment. The memory controller
300 corrects an error in each of the first code words (step
S961). The memory controller 300 determines whether or not
error correction to any one of the first code words has failed
(step S962). In a case where error correction to any one of the
first code words has failed (step S962: Yes), the memory
controller 300 executes second-code encoding error detection
and correction to correct an error in partial data containing the
first code word to which the correction has failed (step S970).
In a case where error correction to all of the first code words
is successful (step S962: No), or after the step S970, the
memory controller 300 takes target data for first-code encod-
ing from the first code in which the error is corrected, and
outputs the target data for first-code encoding (step S963).
After the step S963, the memory controller 300 terminates the
decoding.

FIG. 18 is a flow chart illustrating an example of second-
code encoding error detection and correction according to the
first embodiment. The memory controller 300 acquires adja-
cent partial data adjacent to partial data in which an error is
detected (step S971). Then, the memory controller 300 cor-
rects errors in these adjacent partial data (step S972). Then,
the memory controller 300 corrects the error in the partial data
containing the first code word in which the error is detected
with use of, as the known bit, an adjacent first code to which
error correction is successtul (step S973).

Thus, in the first embodiment, the memory controller 300
encodes each of target data for encoding into the first code
word, and encodes the first code words in chains to generate
the second code word. Moreover, the memory controller 300
is allowed to correct an error in data, based on one or both of

30

35

40

45

20

encoded partial data previous to or following partial data
containing the first code word in which an error is detected in
the second code word. Thus, the memory controller 300 is
allowed to correct the error at higher speed than in a case
where an error in the entire second code word is corrected.
Further, the memory controller 300 is allowed to correct an
error more accurately than in a case where only partial data
containing the first code word in which an error is detected is
corrected.

First Modification Example

In the first embodiment, as exemplified in FIG. 10, a struc-
ture in which the second parity is added to each of the first
code words is adopted as the data structure of the second
code; however, the data structure of the second code is not
limited thereto. The memory controller 300 according to a
first modification example of the first embodiment differs
from that according to the first embodiment in that the second
parities are collectively output for every fixed number of first
code words.

FIG. 19 illustrates an example of a data structure of the
second code according to the first modification example of the
first embodiment. As exemplified in FIG. 19, the memory
controller 300 according to the first modification example
collectively outputs the second parities for every fixed num-
ber of first code words. Hereinafter, data containing a fixed
number of second parities is referred to as “second parity
block”. For example, the number of second parities in the
second parity block is adjusted to allow a size of the second
parity block to be equal to a divisor or a multiple of the access
unit of the non-volatile memory 600.

Second Modification Example

In the first embodiment, encoding is performed with use of
a unit common to first-code encoding and second-code
encoding; however, the unit of the first-code encoding may be
different from a decoding unit. The memory controller 300
according to a second modification example of the first
embodiment differs from that according to the first embodi-
ment in that the second code word is decoded in a unit differ-
ent from the unit of the first-code encoding.

FIG. 20 is a diagram for describing an example of a data
structure of the second code word according to the second
modification example of the first embodiment. For example,
in a case where the first code words #1 to #4 are encoded, in
the second modification example, as exemplified in FIG. 20,
a part containing the first code words #1 and #2 may be partial
data #1, and a part containing the first code words #3 and #4
may be partial data #2. Thus, the memory controller 300 is
allowed to decode the second code word in a unit different
from the unit of the first-code encoding.

Third Modification Example

In the first embodiment, the entire first code word is
encoded; however, the memory controller 300 may encode a
part of the first code word. The memory controller 300
according to a third modification example of the first embodi-
ment differs from that according to the first embodiment in
that the memory controller 300 encodes a part of the first code
word.

FIG. 21 is a diagram for describing an example of a data
structure of the second code word according to the third
modification example of the first embodiment. As exempli-
fied in FIG. 21, the memory controller 300 according to the

US 9,417,956 B2

21

third modification example may encode only a part of the first
code word, for example, only target data for first-code encod-
ing without the first parity into partial data. Therefore, an
encoding length of the second code word is allowed to be
reduced. The first parity is not illustrated in FIG. 21.

Fourth Modification Example

In the first embodiment, an error in target partial data for
correction is corrected after correcting an error in partial data
adjacent to the target partial data; however, the memory con-
troller 300 may correct a combination of these partial data as
one decoding unit. The memory controller 300 according to a
fourth modification example of the first embodiment differs
from that according to the first embodiment in that the
memory controller 300 collectively corrects the target partial
data for correction and partial data adjacent thereto. More
specifically, the check matrix generation section 531 com-
bines the check matrix of the target partial data for correction
and the check matrix of the partial data adjacent thereto to
each other to generate a check matrix with a column number
equivalent to a size of data containing the target partial data
for correction and the partial data adjacent thereto. The check
matrix generation section 531 supplies the thus-generated
check matrix to the second-code error detector-and-corrector
540, and the second-code error detector-and-corrector 540
corrects the combination of the target partial data for correc-
tion and the partial data adjacent thereto as one decoding unit
with use of the check matrix.

FIG. 22 is a flow chart illustrating an example of second-
code encoding error detection and correction according to the
fourth modification example of the first embodiment. The
second-code encoding error detection and correction accord-
ing to the fourth modification example of the first embodi-
ment differs from that according to the first embodiment in
that steps S981 and S982 are executed, instead of the steps
S972 and S973. In the fourth modification example, the
memory controller 300 acquires adjacent partial data adjacent
to the first code word in which an error is detected (step S971),
and acquires partial data containing the first code word in
which the error is detected (step S981). Then, the memory
controller 300 collectively performs error correction to these
acquired partial data (step S982).

Fifth Modification Example

FIG. 23 is a diagram for describing a method of correcting
the second code according to a fifth modification example of
the first embodiment. For example, a case is considered where
a second code containing the first code words #1, #2, and #3
is corrected. The first code word #2 of these first code words
has an uncorrectable number of errors.

The first-code error detection and correction section 520
corrects the errors in the respective first code words #1, #2,
and #3. In this correction, the first-code error detection and
correction section 520 fails correction to the first code word
#2 with the uncorrectable number of errors.

In this case, the second-code error detection and correction
section 530 collectively corrects the first code word #2 to
which correction has failed and the partial data #1 and #3
adjacent thereto. The error in the first code word #2 is cor-
rected by correction to these partial data. In a method in which
the adjacent partial data (#1 and #3) are corrected, and then
the target partial data (#2) for correction is corrected, in a case
where error correction to the adjacent partial data has failed,
the second parity with an error in the adjacent partial data may
be used for correction to the target partial data for correction.

10

15

20

25

30

35

40

45

50

55

60

65

22

On the other hand, in the fifth modification example, the
adjacent partial data and the target partial data for correction
are collectively corrected; therefore, possibility that error
correction is performed with use of a parity with an error is
eliminated, and error correction capability is improved.

2. Second Embodiment

Configuration Example of Second-Code Error
Detection and Correction Section

FIG. 24 is a block diagram illustrating a configuration
example of the second-code error detection and correction
section 530 according to a second embodiment. In the first
embodiment, the second-code error detection and correction
section 530 corrects an error in target partial data for correc-
tion, based on partial data adjacent thereto irrespective of a
result of correction to the partial data adjacent thereto. How-
ever, in a case where the correction to the partial data adjacent
thereto has failed, when error correction to the target partial
data for correction is performed, based on the partial data
adjacent thereto to which the correction has failed, possibility
that the correction to the target partial data fails is increased.
Therefore, in a case where the correction to the partial data
adjacent thereto has failed, it may be preferable to use a
correction method in which an error in partial data adjacent to
the partial data adjacent to the target partial data is corrected
and adjacent partial data are traced back until correction is
successful. The second-code error detection and correction
section 530 according to the second embodiment differs from
that according to the first embodiment in that adjacent partial
data are traced back until correction is successful.

More specifically, in the second-code error detector-and-
corrector 540 according to the second embodiment, the vari-
able node processing section 541 outputs, to the partial data
generation section 532, a correction result indicating whether
or not correction to partial data has failed. For example, in a
case where messages are exchanged a fixed number of times,
when an absolute value of a log-likelihood ratio of one of bits
does not exceed a threshold value, it may be determined that
correction has failed. In a case where correction to the adja-
cent partial data has failed, based on the correction result, the
partial data generation section 532 acquires, as new adjacent
partial data, partial data adjacent to the adjacent partial data,
and outputs the new adjacent partial data to the variable node
processing section 541. It is to be noted that, in the second
embodiment, as with the first embodiment, the second code is
not limited to the spatially-coupled LDPC code. For example,
instead of the spatially-coupled LDPC code, a convolution
code or a turbo code which will be described later may be
used. Moreover, the second-code encoding section 420 may
use a higher-than-binary code as the second code. This is also
applicable to respective modification examples of the second
embodiment.

Operation Example of Memory Controller

FIG. 25 is a flow chart illustrating an example of second-
code error detection and correction according to the second
embodiment. The second-code error detection and correction
according to the second embodiment differs from that accord-
ing to the first embodiment in that steps S974, S975, and S977
are further executed.

The memory controller 300 corrects adjacent partial data
adjacent to the first code word in which an error is detected
(step S972), and determines whether or not the correction is
successful (step S974). In a case where the correction has

US 9,417,956 B2

23

failed (step S974: No), the memory controller 300 acquires,
as new adjacent partial data, partial data adjacent to the adja-
cent partial data to which the correction has failed (step
S975), and returns to the step S972. On the other hand, in a
case where the correction is successful (step S974: Yes), the
memory controller 300 sequentially corrects partial data in
inverse order to tracing order, and corrects target partial data
for correction in which an error is detected (step S977). After
the step S977, the memory controller 300 terminates the
second-code error detection and correction.

FIG. 26 is a diagram for describing a method of correcting
the second code according to the second embodiment. For
example, a case is considered where an error in the second
code containing the first code words #1 to #4 is corrected. The
first code words #2 and #3 of these first code words each have
an uncorrectable number by the first-code error detection and
correction section 520 of errors. Each of second parities #1,
#2, and #3 generated corresponding to respective first code
words also has an error.

The first-code error detection and correction section 520
corrects the errors in the respective first code words #1 to #4.
In this correction, the first-code error detection and correction
section 520 fails the correction to the first code words #2 and
#3 with the uncorrectable number of errors.

The second-code error detection and correction section
530 corrects the errors in the partial data #1 and #3 adjacentto
the first code word #2 to which the correction has failed. It is
assumed that the second-code error detection and correction
section 530 succeeds in correction to the partial data #1 con-
taining the first code word #1 without error, but fails the
correction to the partial data #3 containing the first code word
#3 with the error. In this case, the second-code error detection
and correction section 530 corrects the error in the partial data
#4 adjacent to the partial data #3 to which the correction has
failed.

When the correction to the partial data #4 is successful, the
second-code error detection and correction section 530 cor-
rects the error in the partial data #3 to which the correction has
failed. Since the error in the second parity #3 is corrected by
correction to the partial data #4, the partial data #3 containing
the second parity #3 is allowed to be accurately corrected. In
a case where the correction to the partial data #3 is successful,
the second-code error detection and correction section 530
corrects the error in the partial data #2 to which the correction
has failed. Since the error in the second parity #2 is corrected
by the correction to the partial data #3, the partial data #2
containing the second parity #2 is allowed to be accurately
corrected.

Thus, in the second embodiment, a detected error is
allowed to be corrected, based on adjacent partial data to
which correction is successful by tracing partial data back
until correction to adjacent partial data is successful. Accord-
ingly, an error in data is allowed to be corrected more accu-
rately.

First Modification Example

In the second embodiment, adjacent partial data are traced
back until correction is successful irrespective of a result of
decoding of the first code word. However, in a case where
correction to the first code word has failed, possibility that
correction to partial data containing the first code word fails is
high. Therefore, in a case where partial data are traced back,
it may be preferable to skip over partial data containing the
first code word to which correction has failed. The memory
controller 300 according to a first modification example of the
second embodiment differs from that according to the second

10

20

25

35

40

45

55

24

embodiment in that the memory controller 300 traces partial
data back while skipping over partial data containing the first
code word to which correction has failed.

FIG. 27 is a flow chart illustrating an example of second-
code error detection and correction according to the first
modification example of the second embodiment. The sec-
ond-code error detection and correction according to the first
modification example of the second embodiment differs from
that according to the second embodiment in that step S976 is
further executed.

In a case where error correction to partial data has failed
(step S974: No), the memory controller 300 acquires partial
data adjacent to the partial data to which the correction has
failed (step S975). Then, the memory controller 300 deter-
mines, based on an error detection block notification, whether
or not correction to the first code word contained in the
adjacent partial data is successful (step S976). In a case where
the correction to the first code word has failed (step S976:
No), the memory controller 300 returns to the step S975, and
acquires partial data adjacent to the partial data containing the
first code word to which the correction has failed. On the other
hand, in a case where the correction to the first code word is
successful (step S976: Yes), the memory controller 300
returns to the step S972.

FIG. 28 is a diagram for describing a method of correcting
the second code according to the first modification example of
the second embodiment. For example, a case is considered
where an error in the second code containing the first code
words #1 to #4 is corrected. It is assumed that the first-code
error detection and correction section 520 has failed correc-
tion to the first code words #2 and #3 with the uncorrectable
number of errors.

The second-code error detection and correction section
530 determines, based on the error detection block notifica-
tion, whether or not correction to the first code words #1 and
#3 adjacent to the first code word #2 to which correction has
failed is successful. The correction to the first code word #1 is
successful, but the correction to the first code word #3 has
failed; therefore, the second-code error detection and correc-
tion section 530 skips over the first code word #3 to which the
correction has failed, and determines whether or not the cor-
rection to the first code word #4 adjacent to the first code word
#3 is successful. Since the correction to the first code word #4
is successful, the second-code error detection and correction
section 530 corrects the error in the partial data #4 containing
the first code word #4.

Thus, the detected error is allowed to be corrected, based
on partial data with high possibility of success of correction,
by tracing adjacent partial data back while skipping over
partial data containing the first code word to which correction
has failed. Therefore, an error in data is allowed to be cor-
rected more accurately.

Second Modification Example

In the second embodiment, when correction to adjacent
partial data has failed, the memory controller 300 traces adja-
cent partial data back until correction is successtul. However,
to reliably correct data, it may be more preferable to decode
the entire second code word than to decode a part of the
second code word. A second modification example of the
second embodiment differs from the second embodiment in
that, when correction to adjacent partial data has failed, the
memory controller 300 decodes the entire second code word.

FIG. 29 is a flow chart illustrating an example of second-
code error detection and correction according to the second
modification example of the second embodiment. The sec-

US 9,417,956 B2

25

ond-code error detection and correction according to the sec-
ond modification example of the second embodiment differs
from that according to the second embodiment in that steps
S974, S983, and S984 are further executed.

The memory controller 300 corrects adjacent partial data
adjacent to the first code word in which an error is detected
(step S972), and determines whether or not the correction is
successful (step S974). In a case where the correction has
failed (step S974: No), the memory controller 300 reads the
entire second code word (step S983), and corrects the error in
the second code word (step S984). On the other hand, in a case
where the correction is successful (step S974: Yes), the
memory controller 300 executes the step S973. After the step
S973 or the step S984, the memory controller 300 terminates
the second-code error detection and correction.

3. Third Embodiment

Configuration Example of Second-Code Encoding
Section

In the first embodiment, the LDPC in which a part of data
is common to partial data adjacent to each other is used as the
second code; however, a convolution code may be used as the
second code. The memory controller 300 according to a third
embodiment differs from that according to the first embodi-
ment in that a convolution code is used as the second code.
FIG. 30 is a block diagram illustrating a configuration
example of the second-code encoding section 420 according
to the third embodiment. The second-code encoding section
420 according to the third embodiment differs from that
according to the first embodiment in that a second-code
encoder 430 is included, instead of the second-code encoder
423.

The second-code encoder 430 is configured to encode the
first code word into the second code word with use of a
convolution encoding system. The second-code encoder 430
may include, for example, half adders 431 and 434, and
registers 432 and 433.

The halfadder 431 is configured to output an exclusive-OR
of input values. One of bits configuring the first code word is
input to the half adder 431 as a target bit r,, for second-code
encoding, where “m” is an integer of 0 to Nf-1, and “Nf”is a
code length of the first code word. Moreover, bits output from
the registers 432 and 433 are input to the half adder 431. The
half adder 431 outputs an exclusive-OR of the bits to the
register 432 and the half adder 434.

The register 432 is configured to hold an output value from
the halfadder431. The register 432 outputs a hold value to the
register 433 and the half adder 431 in response to a predeter-
mined clock signal. It is to be noted that an initial value of the
value held by the register 432 may be set to, for example, “0”.

The register 433 is configured to hold an output value from
the register 432. The register 433 outputs the value to the half
adders 431 and 434 in response to a predetermined clock
signal. It is to be noted that an initial value of the value held by
the register 433 may be set to, for example, “0”.

The half adder 434 is configured to output an exclusive OR
of input values. Bits output from the half adder 431 and the
register 433 are input to the halfadder 434. The halfadder 434
outputs an exclusive-OR of the bits as a second parity bit C,,,.

The second-code encoder 430 stores a code word contain-
ing the target bit r,, for second-code encoding and the second
parity bit C,, as the second code word in the encoded-data
buffer 460. A size Ns of partial data of the second code word
generated by convolution encoding may be set to, for
example, a divisor of the access unit of the non-volatile

15

20

25

40

45

55

26

memory 600. It is to be noted that the size Ns of the partial
data may be set to a multiple of the access unit of the non-
volatile memory 600.

A result of a convolution operation with respect to a past
target bit for second-code encoding and a present target bit for
second-code encoding is output as a present second code
check bit.

State Transition Diagram of Second-Code Encoding
Section

FIG. 31 is a state transition diagram illustrating an example
of state transition of the second-code encoder 430 according
to the third embodiment. The second-code encoder 430 has
four states including S, S|, S,, and S;. S, is a state where the
values held by the registers 432 and 433 are “00”,and S, is a
state where the values are “10”. Moreover, S, is a state where
the values held by the registers 432 and 433 are “01”, and S,
is a state where the values are “11”.

The registers 432 and 433 may hold, for example, “00” as
initial values; therefore, an initial state of the second-code
encoder 430 may be set to S, It is to be noted that the initial
state may be set to any of the states other than S,.

In the state S,, when the target bit r,, for second-code
encoding having a value “0” is input, the second-code
encoder 430 performs a convolution operation in the configu-
ration exemplified in FIG. 30, and determines “0” as the
second parity bit C,, by calculation. As a result, values “00”
obtained by adding the input value “0” are output. The values
held in the register 432 and 433 are still “00”; therefore, the
second-code encoder 430 is still in the state S,. On the other
hand, when the value “1” is input in the state S, the second-
code encoder 430 outputs values “11”, and is transitioned to
the state S;.

When the value “0” is input in the state S |, the second-code
encoder 430 outputs values “01”, and is transitioned to the
state S;. On the other hand, when the value “1” is input in the
state S,, the second-code encoder 430 outputs values “10”,
and is transitioned to the state S,.

When the value “0” is input in the state S,, the second-code
encoder 430 outputs values “00”, and is transitioned to the
state S;. On the other hand, when the value of “1” is input in
the state S,, the second-code encoder 430 outputs values
“11”, and is transitioned to the state S,,.

When the value “0” is input in the state S, the second-code
encoder 430 outputs values “01”, and is transitioned to the
state S,. On the other hand, when the value “1” is input in the
state S;, the second-code encoder 430 outputs values “10”,
and is maintained in the state S;.

Thus, the second-code encoder 430 outputs a bit column
configuring the second code and performs state transition,
based on the input value and the present state in accordance
with a certain regulation. Therefore, the second-code error
detection and correction section 530 is allowed to correct an
error in the second code, based on a state transition rule of the
second-code encoder 430.

FIG. 32 is a diagram for describing an example of a method
of generating the second code according to the third embodi-
ment. When a first target bit r, for second-code encoding is
input to the second-code encoder 430 holding the initial val-
ues “00”, a first second parity bit C, generated by an operation
with respect to r, and “00” is output together with the target
bitr,. Then, a register in a preceding stage of the second-code
encoder 430 holds “r,” generated by the operation with
respect to ry and the values “00”.

Next, when a second target bit r; for second-code encoding
is input, a second second parity bit C, generated by an opera-

US 9,417,956 B2

27

tion with respect to r;, 1", and “0” is output together with r;.
Then, a register in a following stage of the second-code
encoder 430 holds “r,” in the preceding stage, and the regis-
ter in the preceding stage of the second-code encoder 430
holds “r," generated by an operation with respect tor, and the
like.

Thus, a value of each data in the second code word is
determined, based on a result of the convolution operation
with respect to data in a preceding stage.

Configuration Example of Second-Code Error
Detection and Correction Section

FIG. 33 is a block diagram illustrating a configuration
example of the second-code error detection and correction
section 530 according to the third embodiment. The second-
code error detection and correction section 530 according to
the third embodiment differs from that according to the first
embodiment in that a second-code error detector-and-correc-
tor 550 is included, instead of the check matrix generation
section 531 and the second-code error detector-and-corrector
540.

The second-code error detector-and-corrector 550 is con-
figured to correct an error in partial data, and may correct an
error in partial data with use of, for example, a Viterbi algo-
rithm.

In the Viterbi algorithm, in accordance with the state tran-
sition rule exemplified in FIG. 31, the states of the second-
code encoder 430 are arranged in time-series order, and a path
with a highest likelihood selected from trellis paths connect-
ing these states is determined Hereinafter, the trellis path is
simply referred to as “path”. More specifically, a hamming
distance between data generated in each of the paths and
partial data read from the non-volatile memory 600 is deter-
mined by calculation, and a path with a shortest hamming
distance (a path metric) is selected. Data generated in the
selected path is output as data to which error correction has
been made.

The second-code error detector-and-corrector 550 sections
the states arranged in time-series order, based on the size of
data, and corrects partial data with use of the Viterbi algo-
rithm. The second-code error detector-and-corrector 550 first
executes decoding of data adjacent to target partial data by the
Viterbi algorithm, and then decodes the target partial data
with use of the determined start-point or end-point state.
More specifically, if adjacent partial data is partial data fol-
lowing target partial data for correction, the start-point state
of'the adjacent partial data is used to perform decoding of the
target partial data, and if the adjacent partial data is partial
data preceding the target partial data for correction, the end-
point state of the adjacent partial data is used to decode the
target partial data. Determining the start-point or the end-
point state of the path (the trellis path) is referred to as “ter-
minating a trellis”. The search of a target path is narrowed by
termination of the trellis; therefore, an error in data is allowed
to be corrected more accurately.

The second-code error detector-and-corrector 550 may use
any algorithm capable of correcting an error in convolution-
ally encoded data, other than the Viterbi algorithm.

FIGS. 34A and 34B are examples of a trellis diagram
illustrating an example of state transition of the second-code
encoding section according to the third embodiment. A case is
considered where partial data #1 to #3 are sequentially read
from the non-volatile memory 600 and correction to the first
code word contained in the partial data #2 has failed. It is
assumed that correction to the first code words in the partial
data #1 and #3 is successful. In FIGS. 34A and 34B, a hori-

10

20

25

30

35

40

45

50

55

60

65

28

zontal axis indicates partial data reading time. A white circle
mark indicates the state of the second-code encoder 430. A
dotted line between states indicates a branch in the path, and
a solid line indicates a branch in a path with a highest likeli-
hood.

FIG. 34A illustrates an example of a trellis diagram before
correction to the partial data #2. The memory controller 300
corrects the partial data #1 and #3 adjacent to the partial data
#2 to which correction has failed with use of the Viterbi
algorithm. The memory controller 300 determines the state S,
at an end point of the partial data #1 and the state S, at a start
point of the partial data #3, based on a correction result.

FIG. 34B illustrates an example of a trellis diagram at the
time of correction to the partial data #2. The memory control-
ler 300 terminates a trellis in correction to the partial data #2
at the end point S, determined in the correction to the partial
data#1 as a start point and the start point S; determined in the
correction to the partial data #3 as an end point. A shaded
circle mark in FIG. 34B indicates a terminated state. The
search of the path is narrowed by termination of the trellis;
therefore, an error in data is allowed to be corrected more
accurately.

Thus, in the third embodiment, the memory controller 300
is allowed to perform error correction with use of the convo-
Iution code as the second code. Therefore, in a system with
use of the convolution encoding system, an error in data is
allowed to be accurately corrected at high speed.

4. Fourth Embodiment

Configuration Example of Second-Code Encoding
Section

In the first embodiment, the LDPC code in which a part of
data is common to partial data adjacent to each other is used
as the second code; however, a turbo code may be used as the
second code. The memory controller 300 according to a
fourth embodiment differs from that according to the first
embodiment in that a turbo code is used as the second code.

FIG. 35 is a block diagram illustrating a configuration
example of the second-code encoding section 420 according
to the fourth embodiment. The second-code encoding section
420 according to the fourth embodiment differs from that
according to the first embodiment in that a second-code
encoder 440 is included, instead of the second-code encoding
target data generation section 421 and the second-code
encoder 423.

The second-code encoder 440 includes a pre-interleaving
second-code encoder 441, a delay buffer 442, an interleaver
443, a post-interleaving second-code encoder 444, and a
switch 445.

The pre-interleaving second-code encoder 441 is config-
ured to encode target data for second-code encoding into the
second code word with use of the convolution encoding sys-
tem. The configuration of the pre-interleaving second-code
encoder 441 may be similar to, for example, the second-code
encoder 430 according to the third embodiment, except that
the pre-interleaving second-code encoder 441 generates only
a second code check bit. The pre-interleaving second-code
encoder 441 outputs a generated second parity bit bC,, to the
switch 445, where “m” is an integer of 0 to Nf-1, and Nfis a
code length of the first code word (i.e., the target data for
second-code encoding).

The delay buffer 442 is configured to delay output of the
target data for second-code encoding to the interleaver 443
until encoding in the pre-interleaving second-code encoder
441 is completed.

US 9,417,956 B2

29

The interleaver 443 is configured to acquire the target data
for second-code encoding through the delay buffer 442, and
to perform interleaving of the target data for second-code
encoding. Error correction capability with respect to a burst
error is increased by this interleaving. When the interleaving
is completed, the interleaver 443 controls the switch 445, and
starts output of the second code check bit from the pre-
interleaving second-code encoder 441. The interleaver 443
outputs the interleaved target data for second-code encoding
to the post-interleaving second-code encoder 444.

The post-interleaving second-code encoder 444 is config-
ured to encode the target data for second-code encoding in
which data is interleaved into the second code word. The
post-interleaving second-code encoder 444 outputs a gener-
ated second parity bit aC,, to the switch 445.

The switch 445 outputs the second parity bit bC,, or aC,,,,
based on control by the interleaver 443. The switch 445
outputs the second parity bit bC,, from the pre-interleaving
second-code encoder 441 before the interleaving, and outputs
the second parity bit aC,, from the post-interleaving second-
code encoder 444 after the interleaving.

The second-code encoder 440 outputs, as the second code,
a code containing the target bit r,, for second-code encoding
and the second parity bits bC,, and aC,, to the encoded-data
buffer 460. The second parity bit bC,, generated before the
interleaving of data is used to decode a part or a whole of the
second code. On the other hand, in a case where decoding of
the part of the second code has failed, the second parity bit
aC,, generated after the interleaving of data is used to decode
the entire second code.

Configuration Example of Second-Code Error
Detection and Correction Section

FIG. 36 is a block diagram illustrating a configuration
example of the second-code error detection and correction
section 530 according to the fourth embodiment. The second-
code error detection and correction section 530 according to
the fourth embodiment differs from that according to the first
embodiment in that a second-code error detector-and-correc-
tor 560 is included, instead of the check matrix generation
section 531 and the second-code error detector-and-corrector
540.

The partial data generation section 532 according to the
fourth embodiment generates partial data from the decoded
first code word and the second parity, and supplies the partial
data to the second-code error detector-and-corrector 560.

The second-code error detector-and-corrector 560 includes
a pre-interleaving second-code corrector 561, an interleaver
562, a post-interleaving second-code corrector 563, and a
deinterleaver 564.

The pre-interleaving second-code corrector 561 is config-
ured to correct an error in the second code word in which data
is not yet interleaved. The pre-interleaving second-code cor-
rector 561 may correct an error in the second code word with
use of, for example, a BCJR (Bahl Cocke Jelinek Raviv)
algorithm.

In a case where the BCIR algorithm is used, the pre-
interleaving second-code corrector 561 receives partial data
from the partial data generation section 532, and receives
prior information Le(u,) from the deinterleaver 564, where
the prior information Le(u,) is a log-likelihood ratio of a kth
symbol (for example, bit) u, determined by the pre-interleav-
ing second-code corrector 563, “k” is an integer of 0 to Nt-1,
and “Ns” is a size of target data for correction. It is to be noted
that the prior information Le(u,) is not determined in an initial
state; therefore, the prior information Le(u,) is set to a pre-

10

15

20

25

30

35

40

45

50

55

60

65

30

determined initial value (for example, “0”"). Moreover, the
target data for correction may be partial data of the second
code word or the entire second code word.

The pre-interleaving second-code corrector 561 takes the
target bit r,, for second-code encoding and the second parity
bit bC,, generated before interleaving from the received data.
Then, the pre-interleaving second-code corrector 561 deter-
mines preceding-state passage probability a,(s) by calcula-
tion with use of the following expression 13, where “s” is a
state of the pre-interleaving second-code encoder 441. More-
over, the preceding-state passage probability o (s) is prob-
ability that a kth state is turned to the state “s” through passage
of respective Oth to k-1th states.

[Math. 13]

Expression 13

() = Y (s’) s (s)

In the expression 13, yk(s', s) is probability of transition
from a state “s™ to the state “s”, and is determined by the
following expression 14.

[Math. 14]

V(8,80 =P(e) p(ryluy) Expression 14

In the expression 14, P(u,) is determined by the following
expression 15 with use of the prior information Le(u,). More-
over, p(r;lu,) is probability of dependence on a communica-
tion channel from the encoded-data supply section 470 to the
first-code error detection and correction section 520 or the
second-code error detection and correction section 560, and is
determined by the following expression 16.

[Math. 15]

o Letw)2 Expression 15

Pluy) = (] . el et

1+ e et
[Math. 16]
Expression 16

E
e

1
plric | w) =]_I me

In the expression 18, Es is energy of a signal per bit in the
communication channel from the encoded-data supply sec-
tion 470 to the first-code error detection and correction sec-
tion 520 or the second-code error detection and correction
section 560 and a unit of Es may be, for example, joule (J),
and N, is noise power density of the communication channel
and a unit of N, may be, for example, watt/hertz (W/Hz).
Es/N, may be determined by calculation with, for example,
an additive white Gaussian noise (AWGN) communication
channel in mind.

If a start-point state is received from the partial data gen-
eration section 532, the pre-interleaving second-code correc-
tor 561 terminates a trellis, based on the state. For example, in
the expression 14, the probability of y(s', s) in which “s™
corresponding to the start-point state is maximized.

Moreover, the pre-interleaving second-code corrector 561
determines following-state passage probability [3,.(s) by cal-
culation with use of the following expression 17, where the
following-state passage probability [,.(s) is probability that

US 9,417,956 B2

31

the kth state is turned to the state “s” through passage of
respective Ns—1th to k+1th states, where the Ns-1th state is a
state at an end.

[Math. 17]

Expression 17

Bels)= D Yin (s,) B ()

If an end-point state is received from the partial data gen-
eration section 532, the pre-interleaving second-code correc-
tor 561 terminates a trellis, based on the state. For example, in
the expression 17, probability of y(s', s) in which “s"” corre-
sponds to the end-point state is maximized.

Then, the pre-interleaving second-code corrector 561
determines a log-likelihood ratio A(u,) from calculation
results of the expressions 13, 14, and 17 by calculation with
use of the following expression 18.

[Math. 18]

Expression 18

D s, Bils)

(s’ Sy =1

X a8y, S)fels)

(s’ Skt =0

Alg) = In.

Next, the pre-interleaving second-code corrector 561
determines whether or not a predetermined termination con-
dition is satisfied, and in a case where the termination condi-
tion is satisfied, a value of a bit u, of corrected data is deter-
mined, based on the determined log-likelihood ratio A(u,),
and is output to the decoded-data buffer 570 and the partial
data generation section 532. For example, when the number
of times information is exchanged between the pre-interleav-
ing second-code corrector 561 and the post-interleaving sec-
ond-code corrector 563 exceeds a predetermined number of
times or when an absolute value of the log-likelihood ratio
A(u,) exceeds athreshold value, it may be determined that the
termination condition is satisfied. However, in a case where a
part of the second code is decoded, information is not
exchanged between the pre-interleaving second-code correc-
tor 561 and the post-interleaving second-code corrector 563;
therefore, when the absolute value of the log-likelihood ratio
exceeds the threshold value, the termination condition is sat-
isfied. The value of the corrected bit u, may be determined to
“1” in a case where the log-likelihood ratio A(u,) is a positive
value, and the value of the corrected bit u, may be determined
to “0” in a case where the log-likelihood ratio A(u,) is a
negative value.

On the other hand, in a case where the termination condi-
tion is not satisfied, the pre-interleaving second-code correc-
tor 561 determines whether or not the entire partial data has
been received. In a case where the entire partial data (i.e., the
second code word) has not been received and a part of the
second code is decoded, the pre-interleaving second-code
corrector 561 generates a correction result indicating that
correction has failed, and outputs the correction result to the
partial data generation section 532. On the other hand, in a
case where the entire partial data (second code word) has been
received, the pre-interleaving second-code corrector 561
determines external information L(u,) from the second code
word received from the partial data generation section 532
and the log-likelihood ratio A(u,) by calculation with use of
the following expressions 19 and 20. The pre-interleaving

10

20

25

30

35

40

45

50

55

60

65

32

second-code corrector 561 outputs, to the interleaver 562, the
determined external information L(u,) together with the
received second code word.

[Math. 19]

L(uy) = Alw) — Lo (oty) — Len () Expression 19
[Math. 20]

Plrilwy = 1)
P(rley, = 0)

Expression 20
Lo () = In

The interleaver 562 is configured to randomly interleave
the second code word and the external information L(u,) from
the pre-interleaving second-code corrector 561. The inter-
leaver 562 outputs, to the post-interleaving second-code cor-
rector 563, the interleaved external information L(u,) as prior
information in the post-interleaving second-code corrector
563 together with the interleaved second code word.

In a case where decoding has failed in the pre-interleaving
second-code corrector 563, the pre-interleaving second-code
corrector 563 reads the entire second code word, and per-
forms decoding of the second code word. In a case where the
entire second code word is read, a longer read time is neces-
sary, compared to a case where a part of the second code word
is read; therefore, reading of the entire second code word is
performed only in a case where partial decoding has failed.

The post-interleaving second-code corrector 563 is config-
ured to correct an error in the second code word in which data
is interleaved. The post-interleaving second-code corrector
563 receives the prior information and the second code word
from the interleaver 562, and takes the target bit u, for second-
code encoding and the second parity bit aC, from the second
code word. The post-interleaving second-code corrector 563
determines external information, based on the prior informa-
tion and the second code word with use of a method similar to
the method used in the pre-interleaving second-code correc-
tor 561. The post-interleaving second-code corrector 563 out-
puts the external information and the second code word to the
deinterleaver 564.

The deinterleaver 564 is configured to return the inter-
leaved second code word and the interleaved external infor-
mation to a state before interleaving. The deinterleaver 564
outputs, to the pre-interleaving second-code corrector 561,
external information before the interleaving as external infor-
mation in the pre-interleaving second-code corrector 561
together with the second code word before the interleaving.

Thus, in the fourth embodiment, an error in data is allowed
to be corrected with use of, as the second code, the turbo code
in which encoding is performed by interleaving data. There-
fore, error correction capability with respect to the burst error
is improved. Moreover, decoding of the entire second code is
performed in a case where decoding of a part of the second
code has failed; therefore, error correction capability is
improved, compared to a case where only partial decoding is
performed.

5. Fifth Embodiment

Configuration Example of Second-Code Encoding
Section

In the first embodiment, the memory controller 300 does
not generate a parity with respect to the second parity. How-
ever, the memory controller 300 may further generate a parity

US 9,417,956 B2

33

with respect to the second parity to correct an error in the
second parity. The memory controller 300 according to a fifth
embodiment differs from that according to the first embodi-
ment in that the parity with respect to the second parity is
further generated. It is to be noted that, in the second to fourth
embodiments, the parity with respect to the second parity may
be further generated.

FIG. 37 is a block diagram illustrating a configuration
example of the second-code encoding section 420 according
to the fifth embodiment. The second-code encoding section
420 according to the fifth embodiment differs from that
according to the third embodiment exemplified in FIG. 30 in
that a parity data buffer 541 and a first-code encoder 452 are
further included.

The parity data buffer 451 is configured to hold each sec-
ond parity as second parity data. The first-code encoder 452 is
configured to encode the second parity data held by the parity
data buffer 451 into the first code word. The first-code
encoder 452 stores the generated first code word in the
encoded-data buffer 460.

FIG. 38 is a diagram illustrating an example of a data
structure of the second code according to the fitth embodi-
ment. The second code contains a plurality of first code
words. Some first code words of these first code words are
encoded target data for first-code encoding, and the remain-
ing first code words are encoded second parity data. For
example, the first code words #1 to #8 may be encoded target
data for first-code encoding, and the first code word #9 may be
encoded second parity data. The first code word #9 contains
second parity data and a first parity #9. This second parity data
may contain second parities #1 to #9 for error correction to the
first code words #1 to #8.

Configuration Example of Second-Code Error
Detection and Correction Section

FIG. 39 is a block diagram illustrating a configuration
example of the second code detection and correction section
530 according to the fifth embodiment. The configuration of
the second-code error detection and correction section 530
according to the fifth embodiment differs from that according
to the first embodiment in that a first-code error detector-and-
corrector 533 is further included.

The first-code error detector-and-corrector 533 is config-
ured to detect and correct an error in the second parity. More
specifically, the first-code error detector-and-corrector 533
detects and corrects an error in the first code word containing
the second parity in input adjacent partial data, and takes the
second parity of the adjacent partial data from the first code
word, and supplies the second parity to the partial data gen-
eration section 532. The partial data generation section 532
generates partial data from the decoded first code word and
the second parity, and supplies the partial data to the second-
code error detector-and-corrector 550.

Thus, in the fifth embodiment, the memory controller 300
is allowed to correct an error in the second parity; therefore,
an error in data is allowed to be corrected more accurately.

6. Sixth Embodiment

Configuration Example of Second-Code Encoding
Section

In the first embodiment, the memory controller 300
encodes data into the first code and the second code; however,
the memory controller 300 may encode data into a code other
than the first code and the second code. The memory control-

10

15

20

25

30

35

40

45

50

55

60

65

34

ler 300 according to a sixth embodiment differs from that
according to the first embodiment in that a code other than the
first code and the second code is further generated.

FIG. 40 is a block diagram illustrating a configuration
example of the second-code encoding section 420 according
to the sixth embodiment. The second-code encoding section
420 according to the sixth embodiment differs from that
according to the first embodiment in that a third-code encoder
423 is further included. The third-code encoder 423 is con-
figured to encode target data for second-code encoding into a
third code. It is assumed that the second-code encoder 422
and the third-code encoder 423 hold a generator matrix.

The third code is a code that is not allowed to be partially
decoded, unlike the second code. In a case where the second
codeis a spatially-coupled LDPC code, for example, a normal
LDPC code may be used as the third code. In a common error
detector-and-corrector, these codes are allowed to be decoded
with use of the spatially-coupled LDPC code and the LDPC
code. The third code contains a plurality of third code words,
and when all of the third code words are used to correct errors,
more errors are allowed to be corrected, compared to a case
where the second code is partially corrected. Therefore, the
third code is used when error correction to the second code
has failed.

The third-code encoder 423 stores each of the third code
words in the encoded-data buffer 460. The second-code
encoder 422 according to the sixth embodiment performs
encoding into the spatially-coupled LDPC code, as with the
first embodiment.

FIG. 41 is a diagram illustrating an example of a check
matrix according to the sixth embodiment. The cheek matrix
according to the sixth embodiment contains two partial matri-
ces, 1.e., check matrices #1 and #2. The check matrix #1 is a
matrix used to correct an error in the spatially-coupled LDPC
code, and is a band matrix similar to that according to the first
embodiment. The check matrix #2 is a matrix used to correct
an error in the LDPC code, and is a sparse matrix with an
extremely small number of “1”’s.

FIG. 42 is a block diagram illustrating a configuration
example of the second-code error detection and correction
section 530 according to the sixth embodiment. The second-
code error detection and correction section 530 according to
the sixth embodiment differs from that according to the first
embodiment in that a code word generation section 534 is
included, instead of the partial data generation section 532.
The code word generation section 534 sequentially generates
adjacent partial data and partial data in which an error is
detected, and supplies the adjacent partial data and the partial
data to the second-code error detector-and-corrector 540. The
code word generation section 534 receives, from the second-
code error detector-and-corrector 540, a correction result
indicating whether or not error correction to the partial data in
which the error is detected is successful. In a case where error
correction to the second code word has failed, the code word
generation section 534 generates all of the third code words,
and supplies the third code words to the second-code error
detector-and-corrector 540. As described above, since more
errors are allowed to be corrected by correcting all of the third
code words, compared to a case where the second code is
partially corrected, error correction capability in an entire
code is improved.

Thus, in the sixth embodiment, even if error correction to
partial data has failed, the memory controller 300 is allowed
to correct more errors by correcting errors in all of the third
code words, compared to the case where the second code is
partially corrected. Therefore, the error correction capability
in the entire code is improved.

US 9,417,956 B2

35

It is to be noted that the above-described embodiments of
the present technology are merely examples for embodying
the present technology, and there are correspondences
between the features of the example embodiments of the
present technology and the elements set forth in the appended
claims. Similarly, there are correspondences between the ele-
ments set forth in the appended claims and the identically
named features appearing in the example embodiments of the
present technology. However, the present technology is not
limited to the embodiments, and may be embodied by vari-
ously modifying the embodiments without departing from the
scope of the present technology.

Moreover, the processing procedures described in the
above-described embodiments may be regarded as a method
having these procedures, or may be regarded as a program for
causing a computer to execute these procedures or as a
recording medium holding the program. As the recording
medium, for example, a CD (Compact Disc), an MD (Mini
Disc), a DVD (Digital Versatile Disk), a memory card, a
Blu-ray Disc (registered trademark), or the like may be used.

It is to be noted that the present technology may have the
following configurations.

(1) An error detection and correction unit including:

a first-code error detection section configured to detect
whether or not each of a plurality of first code words in a
second code word has an error, the second code word gener-
ated by encoding the plurality of first code words in chains
and being a code word containing a plurality of partial data;
and

a second-code error correction section configured to cor-
rect the error in one partial data containing the first code word
in which the error is detected of the plurality of partial data in
the second code word, based on adjacent partial data adjacent
to the one partial data.

(2) The error detection and correction unitaccording to (1),
in which

a data part common to partial data adjacent to each other of
the plurality of partial data is a common code word, and

the second-code error correction section corrects the error
in the one partial data containing the first code word in which
the error is detected, based on the data part common to the one
partial data and the adjacent partial data.

(3) The error detection and correction unit according to (1)
or (2), in which the second-code error correction section
corrects an error in the adjacent partial data, and when error
correction to the adjacent partial data is successful, the sec-
ond-code error correction section corrects the error detected
by the first-code error detection section, based on the adjacent
partial data.

(4) The error detection and correction unit according to (3),
in which, when error correction to the adjacent partial data
has failed, the second-code error correction section corrects
an error in new adjacent partial data that is partial data adja-
cent to the adjacent partial data, and determines whether or
not error correction to the new adjacent partial data is suc-
cessful.

(5) The error detection and correction unit according to (3)
or (4), in which, when an error in the first code word contained
in the adjacent partial data is not detected, the second-code
error correction section corrects the error detected by the
first-code error detection section, based on the adjacent par-
tial data, and when an error in the first code word contained in
the adjacent partial data is detected, the second-code error
correction section determines whether or not an error is
detected in the first code word contained in new adjacent
partial data that is partial data adjacent to the adjacent partial
data.

20

25

40

45

36

(6) The error detection and correction unit according to (3),
in which the second-code error correction section corrects an
error in the second code word when error correction to the
adjacent partial data has failed.

(7) The error detection and correction unit according to any
one of (1) to (6), in which the second-code error correction
section determines whether or not correction to the error that
is performed, based on the adjacent partial data, is successful,
and when the correction has failed, the second-code error
correction section corrects the error, based on third code
words each containing the first code word.

(8) The error detection and correction unit according to (1),
in which

the second code word is a convolution code word, and

the second-code error correction section corrects the error,
based on a result of a convolution operation performed on the
adjacent partial data.

(9) The error detection and correction unit according to (8),
in which the second code word is a turbo code word.

(10) The error detection and correction unit according to
(1), in which the second-code error correction section cor-
rects the error in a combination of the one partial data con-
taining the first code word in which the error is detected and
the adjacent partial data as one decoding unit.

(11) The error detection and correction unit according to
any one of (1) to (10), in which

each of the plurality of partial data contains a second parity
used to correct an error in each of the partial data and a first
parity used to correct an error in the second parity, and

the second-code error correction section corrects the error
in the second parity with use of the first parity, and corrects the
error in the one partial data with use of the corrected second
parity.

(12) The error detection and correction unit according to
any one of (1) to (11), in which each of the plurality of partial
data contains two or more of the plurality of first code words.

(13) An information processor including:

a second-code encoding section configured to generate a
second code word by encoding a plurality of first code words
in chains, the second code word being a code word containing
a plurality of partial data;

a first-code error detection section configured to detect
whether or not each of the first code words in the second code
word has an error; and

a second-code error correction section configured to cor-
rect the error in one partial data containing the first code word
in which the error is detected of the plurality of partial data in
the second code word, based on adjacent partial data adjacent
to the one partial data.

(14) An error detection and correction method including:

detecting whether or not each of a plurality of first code
words in a second code word has an error, the second code
word generated by encoding the plurality of first code words
in chains and being a code word containing a plurality of
partial data; and

correcting the error in one partial data containing the first
code word in which the error is detected of the plurality of
partial data in the second code word, based on adjacent partial
data adjacent to the one partial data.

(15) A non-transitory tangible recording medium having a
program embodied therein, the computer-readable program
allowing, when executed by a computer, the computer to
implement a method, the method including:

detecting whether or not each of a plurality of first code
words in a second code word has an error, the second code

US 9,417,956 B2

37

word generated by encoding the plurality of first code words
in chains and being a code word containing a plurality of
partial data; and

correcting the error in one partial data containing the first
code word in which the error is detected of the plurality of
partial data in the second code word, based on adjacent partial
data adjacent to the one partial data.

It should be understood by those skilled in the art that
various modifications, combinations, sub-combinations, and
alterations may occur depending on design requirements and
other factors insofar as they are within the scope of the
appended claims or the equivalents thereof.

What is claimed is:

1. An error detection and correction unit comprising:

a first-code error detection section configured to detect

whether or not each of a plurality of first code words in
a second code word has an error, wherein the second
code word is generated by encoding the plurality of first
code words in chains and is a code word containing a
plurality of partial data; and

a second-code error correction section configured to cor-

rect an error in one partial data containing the first code
word in which the error is detected from among the
plurality of partial data in the second code word, wherein
the correction is based on adjacent partial data adjacent
to the one partial data.

2. The error detection and correction unit according to
claim 1, wherein

a data part common to partial data adjacent to each other of

the plurality of partial data is a common code word, and
the second-code error correction section corrects the error
in the one partial data containing the first code word in
which the error is detected, based on the data part com-
mon to the one partial data and the adjacent partial data.

3. The error detection and correction unit according to
claim 1, wherein the second-code error correction section
corrects an error in the adjacent partial data, and when error
correction to the adjacent partial data is successful, the sec-
ond-code error correction section corrects the error detected
by the first-code error detection section, based on the adjacent
partial data.

4. The error detection and correction unit according to
claim 3, wherein, when error correction to the adjacent partial
data has failed, the second-code error correction section cor-
rects an error in new adjacent partial data that is partial data
adjacent to the adjacent partial data, and determines whether
or not error correction to the new adjacent partial data is
successful.

5. The error detection and correction unit according to
claim 3, wherein, when an error in the first code word con-
tained in the adjacent partial data is not detected, the second-
code error correction section corrects the error detected by the
first-code error detection section, based on the adjacent par-
tial data, and when an error in the first code word contained in
the adjacent partial data is detected, the second-code error
correction section determines whether or not an error is
detected in the first code word contained in new adjacent
partial data that is partial data adjacent to the adjacent partial
data.

6. The error detection and correction unit according to
claim 3, wherein the second-code error correction section
corrects an error in the second code word when error correc-
tion to the adjacent partial data has failed.

7. The error detection and correction unit according to
claim 1, wherein the second-code error correction section
determines whether or not correction to the error that is per-
formed, based on the adjacent partial data, is successtul, and

38

when the correction has failed, the second-code error correc-

tion section corrects the error, based on third code words each

containing the first code word.
8. The error detection and correction unit according to
5 claim1,

wherein the second code word is a convolution code word,
and

the second-code error correction section corrects the error,
based on a result of a convolution operation performed
on the adjacent partial data.

9. The error detection and correction unit according to

claim 8, wherein the second code word is a turbo code word.

10. The error detection and correction unit according to
claim 1, wherein the second-code error correction section
15 corrects the error in a combination of the one partial data
containing the first code word in which the error is detected
and the adjacent partial data as one decoding unit.

11. The error detection and correction unit according to
claim 1, wherein

each of the plurality of partial data contains a second parity
used to correct an error in each of the partial data and a
first parity used to correct an error in the second parity,
and

the second-code error correction section corrects the error
in the second parity with use of the first parity, and
corrects the error in the one partial data with use of the
corrected second parity.

12. The error detection and correction unit according to
claim 1, wherein each of the plurality of partial data contains
30 two or more of the plurality of first code words.

13. An information processor comprising:

a second-code encoding section configured to generate a
second code word by encoding a plurality of first code
words in chains, the second code word being a code
word containing a plurality of partial data;

a first-code error detection section configured to detect
whether or not each of the first code words in the second
code word has an error; and

a second-code error correction section configured to cor-
rect an error in one partial data containing the first code
word in which the error is detected from among the
plurality of partial data in the second code word, wherein
the correction is based on adjacent partial data adjacent
to the one partial data.

14. An error detection and correction method comprising:

detecting, by one or more processors, whether or not each
of a plurality of first code words in a second code word
has an error, wherein the second code word is generated
by encoding the plurality of first code words in chains
and is a code word containing a plurality of partial data;
and

correcting, by one or more processors, an error in one
partial data containing the first code word in which the
error is detected from among the plurality of partial data
in the second code word, wherein the correction is based
on adjacent partial data adjacent to the one partial data.

15. A non-transitory computer-readable storage medium
having stored thereon a set of computer-executable instruc-
tions for causing a computer to perform a method comprising:

detecting, by one or more processors, whether or not each
of a plurality of first code words in a second code word
has an error, wherein the second code word is generated
by encoding the plurality of first code words in chains
and is a code word containing a plurality of partial data;
and

correcting, by one or more processors, an error in one
partial data containing the first code word in which the

10

20

25

35

40

45

50

55

60

65

US 9,417,956 B2
39 40

error is detected from among the plurality of partial data
in the second code word, wherein the correction is based
on adjacent partial data adjacent to the one partial data.

#* #* #* #* #*

